ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353830338

The effect of low-frequency equalisation on preference and sensorimotor
synchronisation in music

Preprint - August 2021

CITATIONS
0

3 authors, including:
Estefania Cano
“# AudioSoureceRe
57 PUBLICATIONS 578 CITATIONS

SEE PROFILE

All content following this page was uploaded by Steffen A. Herff on 25 April 2023.

The user has requested enhancement of the downloaded file.

READS
129

ﬂ Steffen A. Herff
(f,. ‘ Western Sydney University

46 PUBLICATIONS 320 CITATIONS

SEE PROFILE


https://www.researchgate.net/publication/353830338_The_effect_of_low-frequency_equalisation_on_preference_and_sensorimotor_synchronisation_in_music?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353830338_The_effect_of_low-frequency_equalisation_on_preference_and_sensorimotor_synchronisation_in_music?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Estefania-Cano?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Estefania-Cano?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Estefania-Cano?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steffen-Herff?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steffen-Herff?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Western-Sydney-University?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steffen-Herff?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steffen-Herff?enrichId=rgreq-987050e11077effd7d0f2eef27b9f0d8-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgzMDMzODtBUzoxMTQzMTI4MTE1MzMzNTYwNEAxNjgyNDIyNTQ1NDI2&el=1_x_10&_esc=publicationCoverPdf

1) Check for updates

JEP

Quarterly Journal of Experimental
Psychology

The effect of low-frequency equalisation 3530 s

© Experimental Psychology Society 2021

Original Article

on preference and sensorimotor Al re udelnes
synchronisation in music DO 10.11771174703 3211037145
qgjep.sagepub.com
®SAGE

Scott Beveridge'(l), Estefania Cano' and Steffen A Herff>3

Abstract

Equalisation, a signal processing technique commonly used to shape the sound of music, is defined as the adjustment
of the energy in specific frequency components of a signal. In this work, we investigate the effects of equalisation on
preference and sensorimotor synchronisation in music. A total of 2| participants engaged in a goal-directed upper body
movements in synchrony with stimuli equalised in three low-frequency sub-bands (0-50, 50-100, and 100-200Hz).
To quantify the effect of equalisation, music features including spectral flux, pulse clarity, and beat confidence were
extracted from seven differently equalised versions of music tracks—one original and six manipulated versions for each
music track. These music tracks were then used in a movement synchronisation task. Bayesian mixed-effects models
revealed different synchronisation behaviours in response to the three sub-bands considered. Boosting energy in the
100—200 Hz sub-band reduced synchronisation performance irrespective of the sub-band energy of the original version.
An energy boost in the 0-50 Hz band resulted in increased synchronisation performance only when the sub-band energy
of the original version was high. An energy boost in the 50—-100Hz band increased synchronisation performance only
when the sub-band energy of the original version was low. Boosting the energy in any of the three sub-bands increased
preference regardless of the energy of the original version. Our results provide empirical support for the importance of
low-frequency information for sensorimotor synchronisation and suggest that the effects of equalisation on preference
and synchronisation are largely independent of one another.
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Introduction In many forms of music, the instruments responsible
for driving groove are bass (e.g., bass guitar) and percus-
sion (e.g., drum kit) (Pressing, 2002). It is important to
note that these instruments often perform in the lower

Music makes us move. This desire to move in response to
music can be attributed to specific rhythmic structures and
acoustic characteristics, collectively known as “groove”
(Pressing, 2002). Prior research has shown that the experi-
ence of groove is consistent across individuals (Janata
et al," 2012; Madison, 2006)_and is largely independent of Computing, Agency for Science, Technology and Research (A*STAR),
music style and genre (Madison, 2006). Furthermore, the Singapore
feeling of groove is positively correlated with movement 2Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
accuracy and perceived ease of motor entrainment (Janata Switzerland
et al., 2012; Madison et al., 201 1)_ The music factors that 3Music (.:ognitiorT and Action Research Group (MCA), MABCS !nstitute
represent “groove” are a subject of much research that f?,\r:&ams’ iehav'ausrvs‘ Eievelof ment, Western Sydney University
broadly examines rhythmic (Madison et al., 2011; Pressing, (WSU), Sydney.  Austrata
2002) and acoustic features (Stupacher et al., 2013,2016). ~ Corresponding author: . ‘ .
The present investigation predominantly focuses on the lS)cott: Beveridge, Socm'I and Cognitive Cfamputmg, Institute of High

. . . K erformance Computing, Agency for Science, Technology and Research
role of acoustic features in groove, specifically their effects  (axsTAR), Singapore 138632, Singapore.
on sensorimotor synchronisation performance. Email: scott.beveridge@ihpc.a-star.edu.ag

'Social and Cognitive Computing, Institute of High Performance


https://uk.sagepub.com/en-gb/journals-permissions
http://qjep.sagepub.com
mailto:scott.beveridge@ihpc.a-star.edu.ag
http://crossmark.crossref.org/dialog/?doi=10.1177%2F17470218211037145&domain=pdf&date_stamp=2021-08-13

476

Quarterly Journal of Experimental Psychology 75(3)

frequency registers (Butterfield, 2010; Pressing, 2002).
The preference of using instruments in specific frequency
registers to induce rhythmic movements clearly exempli-
fies the acoustic dimension of groove. Indeed, the link
between low frequencies and movements has been evi-
denced in motor tasks within the context of contemporary
dance music, where participants were shown to display a
higher degree of tempo entrainment when the dynamic
level of the bass drum was increased (Van Dyck et al.,
2013). Additional evidence for the connection between
low frequencies and movements comes from studies show-
ing that during exercise, boosted bass frequencies can be
used to increase arousal and encourage rhythmic move-
ments (Karageorghis et al., 2012). Furthermore, intense
low-frequency sounds evoke responses in the vestibular
system which — besides generating pleasurable sensations
(Todd & Cody, 2000) — plays an important role in musical
rhythm perception (Trainor et al., 2009). In a study that
artificially manipulated the frequency range of bass and
bass drum, tapping variability was lower when the bass
instruments contained frequency components in the low
bass range (where the played bass line was one octave
lower than the original, and the peak frequency of the bass
drum was reduced from 140 to 40 Hz) (Stupacher et al.,
2016). A “low-tone benefit” has also been observed in
studies that require synchronising finger tapping with
auditory cues, revealing that pitches in the lower registers
improved synchronisation accuracy compared with pitches
in higher registers (Hove et al., 2014). Taken together,
these studies emphasise a connection between low-fre-
quency components in music and motor activity.

Music listeners as well as professional audio engineers
have the means to directly manipulate low-frequency
components of music. This is often times achieved
through equalisation. Equalisation (EQ) is a signal pro-
cessing technique that allows a listener to adjust the
energy of specific frequencies within the audible band-
width (Huber & Runstein, 2005). In consumer audio play-
back devices, equalisation is commonly applied to specific
frequency ranges known as sub-bands. Rhythm-carrying
instruments, for example, typically inhabit the lowest sub-
bands, with the low presence of the bass kick drum in the
50-100 Hz range and the electric bass guitar in the 41.2—
343.2Hz (E1 to F4) range (Hepworth-Sawyer & Hodgson,
2016; Huber & Runstein, 2005). Equalisation provides
substantial control over frequency content, allowing lis-
teners to boost or attenuate these sub-bands based on their
requirements or preferences. However, excessive manipu-
lation of frequency content can also be detrimental and
can result in loss of clarity between instruments. Among
professional music engineers and audiophiles alike, there
exist some common “rules-of-thumb” concerning equali-
sation of low-frequency content. In the range of 1660 Hz,
which gives the bass a sense of power (Izhaki, 2018),
excessive boosting can make the music sound muddy.

This can lead to a loss of definition between instruments
(Owsinski, 1999). In the 60-250Hz frequency range,
which encompasses the fundamental frequencies of the
rhythm section (Izhaki, 2018) and gives the bass sound
body and depth, excessive boosting may overdrive the
reproduction loudspeaker. This can make music sound
what is termed as boomy (Owsinski, 1999). It is important
to note, that while the goal of equalisation is to change the
perceptual sound qualities of a song, it can also implicitly
produce changes in acoustic features (e.g., spectral flux,
pulse clarity, etc.) relevant to aspects of groove and senso-
rimotor synchronisation.

The frequency content and spectral characteristics of a
given song can be described with numerous acoustic fea-
tures. Spectral flux (i.e., a measure of the change in the
spectral content of a signal between different time
instances), in particular, has proven to be a useful charac-
terisation of groove and hence a good “anchor” for senso-
rimotor synchronisation tasks. In a number of behavioural
studies, specific relationships between spectral flux meas-
ured in the low frequencies and music-induced movement
have been investigated, most notably those conducted by
Burger and colleagues (2013, 2014, 2018). In the carliest
of these studies, where participants were asked to move to
music, a positive correlation between head movement
speed and spectral flux in the 50-100 Hz frequency sub-
band was reported. In Burger et al. (2014) using the same
movement instructions, participants demonstrated peri-
odic body movements in the mediolateral (sideways) and
anteroposterior (forward-back) planes that correlated with
spectral flux in the same sub-band (50-100Hz). These
movements were found to synchronise to different metri-
cal levels simultaneously and interchangeably, suggesting
a complex relationship between periodic movement, low-
frequency spectral flux, and meter (Burger et al. 2014). In
a later study examining music-induced synchronisation
ability, Burger et al. (2018) reported improved synchroni-
sation ability to music with high spectral flux in the 100—
200 Hz sub-band. More specifically, these results showed
an improvement in synchronisation ability in vertical feet
and hip movement at the beat level. These studies guide
the present investigation in using spectral flux to charac-
terise low-frequency content in music.

It is important to note that the above studies also sug-
gest that synchronisation ability may be influenced by
tempo (Burger et al., 2018). Generally, tempo synchronisa-
tion can be more easily achieved when music is played at
a tempo that affords easy synchronisation (Madison et al.,
2011). Previous research suggests synchronisation to
music is most easily achieved at a moderate tempo corre-
sponding to beat periods (i.e., inter-beat-intervals) between
450 and 700ms (Fraisse, 1982; Parncutt, 1994; van
Noorden & Moelants, 1999), with a preference for tempi
around 120 BPM, with an inter-beat-interval around
500ms (Moelants, 2002).
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Pulse clarity is another acoustic feature that has been
studied in the context of sensorimotor synchronisation.
Pulse clarity attempts to characterise the high-level
dimension that conveys how easily a listener can per-
ceive the metrical pulsation in a given musical piece
(Lartillot, Eerola, et al., 2008). Results of previous
research show correlations between the amount of whole-
body movements and pulse clarity (Burger et al., 2013)
with highest correlation exhibited between superior-infe-
rior movements at the beat level (Burger et al., 2014).
Pulse clarity was also examined in an experiment involv-
ing a goal-directed (walking) movement (Prithvi et al.,
2019), and it was observed that reduced pulse clarity
resulted in poorer synchronisation ability. Following
these findings, we also include two separate measures of
pulse clarity in our study and investigate their effect on
sensorimotor synchronisation.

Sensorimotor synchronisation performance is most
commonly assessed using the finger tapping paradigm. In
such a paradigm, performance is assessed by comparing
the alignment between a specific movement event (e.g., a
finger tap) and the rhythmic events in the reference signal
(e.g., a metronome click or the beat of music). The time
difference between the movement event and the reference
rhythmic event is known as the synchronisation error or
asynchrony. Sensorimotor synchronisation ability has
been assessed in a variety of contexts and for a variety of
movements including finger tapping in motor control
research (Repp, 2005; Repp & Su, 2013), upper-limb
movement in the analysis of skilled movements in musi-
cians (Beveridge et al., 2020; Fujii et al., 2009), lower limb
exercise performance (Buhmann et al., 2018), and lower
limb assessment of neurological disorders (Stegemoller
et al., 2009; Verheul & Geuze, 2004).

Given our study design, it is important to consider aes-
thetic preference as an established mediating variable. For
example, the “loudness-war” refers to a specific mixing
trend that maximises perceived loudness on the assump-
tion that loudness correlates with preference (Vickers,
2010) (also see Hove et al., 2019). Indeed, in a task that
provided participants with the direct opportunity to apply
audio manipulations to musical songs, they preferred
mixes with more energy in the bass frequencies
(Dobrowohl et al., 2019), and listeners tend to prefer a
higher loudness level proportional to their liking of the
music (Cullari & Semanchick, 1989). Furthermore, prior
research has shown a relationship between musical pref-
erence and performance in simultaneously executed tasks
(North & Hargreaves, 1999), engagement with the envi-
ronment (North & Hargreaves, 1996), and willingness to
move (Witek et al., 2014). In addition, the music-induced
desire to synchronise movement is often considered
enjoyable. Indeed, prior studies have shown that higher
aesthetic preference, predicts higher perceived ratings of
groove (Senn et al., 2019). As a result, should an effect of

low-frequency equalisation be observed, a possible expla-
nation would be that a particular low-frequency manipu-
lation may have influenced aesthetic preference, which in
turn, increases task performance and willingness to move
in the synchronisation task.

Specifically, this study investigates the relationship
between sensorimotor synchronisation performance and
low-frequency equalisation in music. We conducted a
music movement experiment in which participants were
asked to perform a goal-directed movement in time with
manipulated versions of novel music tracks. Track manip-
ulation involved boosting or attenuating three low-fre-
quency sub-bands (0-50, 50-100, and 100200 Hz). This
was achieved by applying different types of filters to the
stimuli that increase or decrease energy in these sub-bands.
The manipulation procedure yielded seven versions of
each track (one original, unmodified version, one attenu-
ated at each sub-band, and one boosted at each sub-band).
By applying these filters we are in effect causing spectral
modifications to the stimuli. While these spectral modifi-
cations have a clear impact on musical features (like spec-
tral flux, pulse clarity, and beat confidence), they do not
modify tempo, style, or instrumentation of the different
versions of the stimuli. This described manipulation is
analogous to the equalisation process. To control for poten-
tial confounding effects of tempo, this study only uses
stimuli with a tempo of 120 BPM. In the synchronisation
task, participants performed an arm abduction/adduction
movement commonly used as part of motor rehabilitation
regimes. Synchronisation performance was assessed by
means of synchronisation error.

To account for the influence of aesthetic preference, we
assess whether the relationship between preference and
low-frequency equalisation is similar to the relationship
between low-frequency equalisation and sensorimotor
synchronisation. In a separate procedure, we measured
self-report measures of preference in response to a differ-
ent set of music tracks manipulated in the same manner as
in the synchronisation task. A preference task immediately
followed a movement synchronisation task. Each partici-
pant completed a total of seven movement synchronisation
tasks, each one followed by a preference task. The goal of
alternating movement and preference tasks was to reduce
possible carry over effects in the participants when syn-
chronising to stimuli with the same tempo (120 BPM in
our case).

This study addresses two main research questions.
First, we investigate how sensorimotor synchronisation
ability is affected by low-frequency equalisation. Second,
we study how the same low-frequency manipulations
affect preference and whether this effect is similar to that
observed in the sensorimotor synchronisation task.
Following the notion that groove is “carried” by rhythmic
instruments in the low-frequency register, and the reported
correlation between higher groove and ease of motor
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Table I. List of tracks from the MUSDBI8 dataset used as stimuli in the experiment.

Movement set

Preference set

Buitraker—Revo X

Georgia Wonder—Siren

Girls Under Glass—We Feel Alright

James Elder & Mark M Thompson—The English Actor
Phre The Eon—Everybodys Falling Apart

The Easton Ellises (Baumi)—SDRNR

Zeno—Signs

Al James—Schoolboy Fascination
Arise—Run Run Run
Forkupines—Semantics

Little Chicago’s Finest—My Own
Mu—Too Bright

Nerve 9—Pray For The Rain
Speak Softly—Broken Man

entrainment, we hypothesised that increased low-fre-
quency energy would result in improved sensorimotor
synchronisation performance and preference, irrespective
of band manipulation.

Materials and methods

Participants

A total of 21 participants took part in the study (9 female,
12 male, M=31years, SD="7.56 years). Three participants
were left-handed and 18 right-handed. Eight participants
had received formal musical education. All participants
gave their informed consent before the start of the study,
and were free to withdraw from the study at any point.
Ethical approval for this study was obtained by the Human
Biomedical Research Council Institutional Review Board
(IRB Ref2018-002), Agency for Science, Technology, and
Research (A*STAR), Singapore.

Stimuli

Seven songs were selected for the synchronisation task,
and another seven songs were selected for the preference
task. No songs were shared between the two tasks to avoid
potential carry over or order effects, as music in particular
induces resilient memory traces (Herff et al., 2018, 2019).
For the same reason, song order was randomised in both
tasks. For each song, there were seven differently modified
versions.

All stimuli were selected from the MUSDBI18 corpus
(Rafii et al., 2017) (see Table 1 for the list of audio stim-
uli). MUSDBIS is a freely available dataset comprising
150 multi-track recordings of mostly rock and pop music,
compiled for use in research in the music sound source
separation community. Besides instrumental stems,
MUSDBI8 also provides a mix for each track in the cor-
pus. All tracks are non-commercial recordings, and so are
completely unfamiliar to the participants. Selected seg-
ments were 15 s long, were in a time signature of 4/4, and
had similar instrumentation, including drums, bass,
accompanying instruments and a lead singer (female or
male). All segments were extracted from the mixed track
included in the corpus. The set of tracks used for the

preference task have tempi in the §7-151 BPM range, and
were used without any tempo modifications. The set of
tracks used in the synchronisation task originally had
tempi in the 113—-127 BPM range. However, the tempo of
all the tracks in the synchronisation set was modified to
120 BPM using the default “Change Tempo™ effect in
Audacity! (version 2.3.0, high quality stretching option
enabled). This tempo modification ensured synchronisa-
tion tracks were at the preferred tempo for sensorimotor
synchronisation (Moelants, 2002). Tracks in the prefer-
ence task were left unmodified to reduce carry over effects
from repeated synchronisation tasks with tracks at 120
BPM. As the preference task was web-based (see the
“Music preference task™ section), this alternating task
arrangement had the additional benefit of providing respite
from the physical activity of the movement synchronisa-
tion task. Tracks presented in the synchronisation task
were preceded with an extra audio segment that repre-
sented a four beat count in. This count was provided by a
tone similar to that of a metronome. The tracks in the pref-
erence set were kept in their original stereo format, while
the tracks in the movement set were down-mixed from
stereo to mono (single-channel) to remove possible effects
of the panning in the mix on sensorimotor synchronisation.
The process of down-mixing to mono essentially removes
any spatial/location cues from the different musical instru-
ments in the mix. All the tracks have a sampling frequency
0f 44,100 Hz.

To modify the spectral characteristics of the stimuli,
and assess its impact on sensorimotor synchronisation, a
set of filters were designed with the goal of attenuating or
boosting the energy in certain frequency bands. While
there are potentially many ways of modifying the music
tracks, we argue that using filters commonly used in audio
processing (e.g., in the equalisation process) allows us to
seamlessly modify the music tracks without creating audi-
ble distortions or changing the auditory experience of the
participants beyond a simple equalisation. To make the
modifications of the music files as transparent and congru-
ent as possible with the feature extraction process, the cut-
off frequencies of the filters were chosen such that they
coincide with those of the sub-bands used in the spectral
flux calculation (see the “Music feature extraction” sec-
tion). In particular, the boundaries of the three lowest
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Figure |. Experimental task showing wrist marker position
and range of motion (ROM) bounded by upper and lower arm
limits.

spectral bands in the spectral flux calculation, namely, 50,
100, and 200 Hz, were used for the filter design.

To achieve the attenuation of the spectral bands, three
high-pass filters were implemented with 50, 100, and
200 Hz as cut-off frequencies, respectively. The three fil-
ters were second-order elliptical filters with 3dB pass-
band ripple, and 40 dB stopband attenuation. Similarly, to
boost the energy of the spectral bands, three second-order
bandpass filters with 50Hz bandwidth, 3dB gain, and
with 50, 100, and 200 Hz as their higher cut-off frequen-
cies, respectively, were implemented. The choice of these
filters was made to ensure that the filtered versions of the
tracks were distinct from each other, while maintaining a
natural sound without distortions, saturation, or unpleas-
ant audible effects. After the application of the filters and
before feature calculation, peak normalisation was applied
to all the audio files. This was done to guarantee that the
feature calculations are not influenced by different energy
levels in the songs. The same filtering and normalisation
procedure was applied to all the tracks in the movement
and preference sets. In total, seven versions of each track
were used in the study: (1) Gain 50Hz, (2) Gain 100 Hz,
(3) Gain 200 Hz, (4) Original—No filters, (5) Attenuation
50Hz, (6) Attenuation 100 Hz, and (7) Attenuation 200 Hz.
This amounts to a total of 49 stimuli (7 songs X 7 ver-
sions) for each set.

Apparatus

Participants’ movements were recorded with a Microsoft
Kinect™ V2 camera (Microsoft, USA) controlled by cus-
tom software written in Unity (Unity Technologies, USA)
and using the Kinect SDK Unity plugin.? Skeleton joint
position data in three axes (X =mediolateral, Y =anteropos-
terior, Z=vertical) were captured at a frame rate of 50 Hz.

Joint position data are estimated with the Kinect, which
uses both infrared (IR) and RGB cameras for anatomical
landmark identification (Menna et al., 2011). Music was
delivered by headphone (KNS-6400 Studio Monitor
Headphones, KRK Systems, USA) and synchronised
with the movement data in the custom software.

Procedure

Each participant completed a total of seven movement
synchronisation tasks, each one followed by a music pref-
erence task.

Movement synchronisation task. In each synchronisation
task, participants performed a directed movement to the
beat of a music track. Participants were positioned 2 metres
from the Kinect motion capture camera. The main move-
ment involved an abduction/adduction of the right arm in
the frontal (X-Z) plane (Figure 1). This arm abduction/
adduction movement was chosen as it is a component in
so-called “reaching tasks,” a common assessment for
motor impairment (Chen et al., 2016; Roby-Brami et al.,
2003; Thaut et al., 2002). Arm abduction/adduction is also
a fundamental component in a number of functional move-
ments (e.g., dressing, hair combing). Upper and lower lim-
its of motion for each participant were defined prior to the
beginning of the main task. Participants were instructed to
move their arm between upper and lower limits in syn-
chrony with the music stimuli. All tracks in the movement
set were modified to have a tempo of 120 BPM, which is
equivalent to an inter-beat interval (IBI) of 500 ms, and in
the preferred range for beat induction and synchronisation
(Moelants, 2002). Participants were encouraged to begin
attempting to synchronise immediately upon hearing the
priming (count in) tones. No visual feedback was given to
the participant during the procedure. This task can be tiring
for the arm muscles, and as a result, the task was limited to
seven trials in total per participant and interleaved with the
preference task to avoid fatigue effects. The order in which
the tracks were presented was fully randomised for each
participant. Each participant listened to each track once,
each subjected to a different filter (see the “Music feature
extraction” section). Which filters is applied to which track
is counterbalanced across participants, to ensure that we
obtain equal numbers of observations of each track-filter
pair across the sample. To avoid carry-over effects between
the preference and the synchronisation task, different
songs (from the same corpus) were utilised in the two
tasks. This step also ensures that potential similarities
between the effect of a given manipulation in the two tasks
is indeed driven by the audio manipulation rather than a
specific song being used in both tasks.

Music preference task. The music preference task was con-
ducted as a web-based listening test where participants
were asked to rank in order of preference the different fil-
tered versions of the same original song. The user interface
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Figure 2. Schematic of the movement task showing asynchronies (synchronisation error) between beat locations and arm reversal
points (denoted by points in the movement where velocity=0). In A and B the reversal point precedes the beat location. In C and

D the reversal point lags the beat location.

used for the preference task is shown in the Supplementary
Materials section, which is a modification of the web-
MUSHRA framework (Schoeffler et al., 2018). The seven
versions of each song in the preference set (six modified
versions plus the original song) were presented to the par-
ticipant in randomised order. Participants were free to lis-
ten to the seven versions in any order, and as many times
as necessary to be able to rank them according to prefer-
ence (l=most preferred, T=least preferred). The user
interface only allows the participant to assign a ranking to
a track once it has been played at least once. The order in
which the seven preference tests were presented to each
user was also randomised.

Data processing and synchronisation
analysis

Using MATLAB (Mathworks, USA) we calculated the
velocity of the wrist marker in the (vertical) Z-axis (see
Figure 1). As each participant was instructed to synchro-
nise their movement between upper and lower limits, we
consider the arm reversal point as the synchronisation
point. The reversal point is defined as the zero-crossing
point of the velocity trajectory of the projected wrist
marker (Figure 2). These points will be referred as reversal
points in the remainder of this article.

To extract the reference beat positions, the Madmom
beat tracker algorithm proposed in Bock et al. (2016) was

applied to the original version of each song. The Madmom
algorithm has reported an F-measure score on beat track-
ing performance of 0.9 on Western pop music, music simi-
lar to that used in this study. To further verify the accuracy
of the beat positions extracted with Madmom, one profes-
sional musician manually annotated the beat positions for
all the original tracks. A maximum time difference (A)
between automatic and manual annotations of 50ms was
defined as the threshold for annotation accuracy. All the
extracted beat positions had As below the threshold, and
hence the annotations obtained with Madmom were used
as reference beat positions for all tracks. Given that the
modifications applied to each original songs only change
the timbral characteristics of the tracks (and not the rhyth-
mic ones), the beat positions extracted from the original
songs are also valid for all versions of the tracks.

As a measure of synchronisation error (or asynchrony),
we calculate the absolute value of the difference between
each arm reversal point and its corresponding beat position
in ms. We refer to this measure as AbsAsynchrony, and
formally define it as:

AbsAsynchrony, =| arm reversal point,

(1)

—beat position; |

with ; the index of the corresponding beat position and
reversal point. It is important to note that AbsAsynchrony
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is calculated for each individual (abduction/adduction)
movement as indicated by the i subscript in its definition.
The absolute value in the calculations signifies that we do
not discriminate between asynchronies that precede or
succeed the beat position, that is, we do not discriminate
between being early and being late. AbsAsynchrony is
given in units of ms. The result is a different time series of
AbsAsynchrony values for each participant and stimulus
combination.

Music feature extraction

Spectral flux. Spectral flux is a measure of the frame-wise
change in the spectral content of an audio signal. In this
work, we focus our analysis on the three lowest bands of
the spectral flux calculation as obtained by the sub-band
(““Subband”) decomposition of the MIRToolbox (version
1.7.2) (Lartillot, Toiviainen, & Eerola, 2008). The spectral
flux can be used to reveal periodicities in a signal such as
beats or bars, or to measure the stability of the signal over
time. In this study, the spectral content in the spectral flux
calculation is taken from the short time Fourier spectrum
calculated on time windows of a given length. The dis-
tance (or change) between two spectral frames is obtained
by calculating the Euclidean distance between the frames.

The spectral flux of the three lower spectral bands (sub-
bands) is defined as follows for the remainder of this work:

e SFBandl: spectral flux calculated in the 0-50 Hz
frequency range.

e SFBand2: spectral flux calculated in the 50-100 Hz
frequency range.

e SFBand3: spectral flux calculated in the 100-200
Hz frequency range.

It is important to note that our experimental design
does not guarantee a constant increase/decrease in terms
of spectral flux for all of the tracks when applying a given
filter. Spectral flux represents a measurement of how
much the spectral content in a certain spectral band
changes in time. However, the amount of energy in each
of the spectral bands in consideration highly depends on
the original song: while a given song might have heavy
percussion and a bright bass sound evident in the spectral
flux of the lower bands, some other song might have
lighter percussion and less prominent bass sounds. When
applying the filters to these two distinct songs, the results
will naturally be very different. The filter implementation,
however, does bring a guarantee for the stimuli in our
dataset: the spectral flux for each band will be the lowest
for the attenuated version, highest for the boosted version,
and in between the filtered versions for the original track.
This effect can be seen in Figure 3, where the spectral flux
for the original, attenuated and boosted version for the
first three spectral bands is shown for each song in the
Movement Set (see Table 1).

Pulse clarity. Pulse clarity refers to the high-level musical
dimension that conveys how easily listeners can perceive
the metrical pulsation in a given musical piece (Lartillot,
Eerola, et al., 2008). In practice, the calculation of pulse
clarity is based on an onset detection function (ODF). The
ODF indicates the main events in the music piece that may
contribute to the evocation of pulsation. Pulse clarity is
then defined in terms of the autocorrelation of the ODF. In
this work, we use an onset detection function based on
spectral flux, and the global maximum of the autocorrela-
tion curve (“MaxAutoCor”) to calculate pulse clarity using
the MIRToolbox (version 1.7.2) (Lartillot, Toiviainen, &
Eerola, 2008).

Beat tracking confidence measure. As an additional measure
of beat clarity we include the beat tracking confidence
measure proposed in (Zapata et al., 2012). The idea behind
the confidence measure is to provide a numerical value
that indicates how reliably beat information can be algo-
rithmically extracted for a given song. The measure is
defined as the mean mutual agreement (MMA) between a
committee of beat trackers. To calculate the confidence
measures, the implementation available in Essentia® library
for music analysis was used.

Statistical approach. The present design considers beat-
wise arm movement data as well as song-wise preferences
rankings. However, within a song and within a participant,
these data are non-independent. Both aggregating and
under-utilising the data provided, as well as analysing the
data without accounting for the underlying structural
dependencies, can lead to flawed conclusions (Meteyard &
Davies, 2020). To make use of the full data structure, while
accounting for hierarchical dependencies, we use Bayes-
ian mixed-effects models (Snijders & Bosker, 2011). These
models can account for cross-random effects between par-
ticipants and stimuli (Baayen et al., 2008), while also con-
trolling for fatigue effects that correlate with an increasing
trial number. All models are implemented in R using the
brms package (Biirkner, 2017).

For each analysis, we describe the architecture of the
model and report the results of models with 1,000 warm-
ups, 10,000 iterations, on 4 chains, provided with a weakly
informative prior #(3,0,1) (Gelman et al., 2008). We report
coefficient estimates (), and estimated error in the coef-
ficients (EE). Evidence ratios (Odds) for the individual
hypotheses are reported, and for convenience, we indicate
effects that can be considered significant at an o = .05
level with *. This corresponds to an odds ratio =19 (Milne
& Herft, 2020).

Results

Synchronisation

We refer to spectral flux calculated in the 0-50 Hz fre-
quency range as SFBandl, to spectral flux calculated in
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Figure 3. Spectral flux for all the tracks in the synchronisation study.
It can be observed that for each spectral band (SFBand |, SFBand2, SFBand3), the spectral flux of the tracks with the attenuation filter is the lowest,
the spectral flux of the tracks with gain filters if the highest, and the spectral flux of the original version (without filtering) is in between the attenua-

tion and gain versions.

the 50-100 Hz frequency range as SFBand2, and to spec-
tral flux calculated in the 100-200 Hz frequency range as
SFBand3. We denote the original song the 0 condition, and
define their sub-band spectral flux as: SFOBandl,
SFOBand2, and SFOBand3. For example this means that in
a trial in which a participant is listening to the original ver-
sion of a stimulus, SFBand and SFOBand would be identi-
cal for all three frequency bands (SFBandl=SF0Bandl,
SFBand2=SF0Band?, etc.). However, in a trial where par-
ticipants are listening to a version in which SFBandl is
boosted, then in this trial, SFBandl would be larger than
SFOBand1. This allows us to model the effect of boosting
and attenuating frequency bands, as well as their possible
interactions with the spectral flux of the original version.
Considering the interaction between the current song ver-
sion, as well as the original song version is important. For
example, it could be that boosting SFBand| of a song that
has high SFOBand! to begin with may affect both prefer-
ence and synchronisation behaviour differently, compared
with boosting SFBand] of a song that has low SFOBand1
to begin with. This is because low or high SF0Band1 could
be indicative of a deliberate choice of the audio engineer
that mixed the original version of a song. This choice may
have been made to highlight or suppress a specific fre-
quency band that contains a particular instrument or an
important part of the song.

All spectral flux values were normalised by subtracting
the mean spectral flux value of the respective band and

dividing by its standard deviation. A Bayesian mixed-
effects model was used to predict AbsAsynchrony. In the
context of this work, lower AbsAsynchrony indicates better
synchronisation performance. To predict AbsAsynchrony,
the model was provided with SFOBandl, SFOBand2,
SFOBand3, SFBandl, SFBand2, SFBand3, as well as the
interaction terms SFBandl X SFOBandl, SFBand2 X
SFOBand?2, and SFBand3 X SF0Band3. To account for
possible sources of noise in the experimental design, the
model was provided with a random intercept for
TrialNumber, ArmReversalPointNumber within a trial,
Participant and Song.

Effect of the original spectral flux on synchronisation
performance. Results do not show strong evidence
that SFOBandl, Bgropunai=—07, EEgqp..0=-38, Odds
Bsropana1 < 0)=1.46, or SFO0band2, PBgropamar=-26,
EE ¢oopanar =40, 0dds( Bspopana, > 0)=3.21, predict
AbsAsynchrony. However, we obtained strong evidence
that greater values in SFOBand3, PBsropamaz=—76,
EE spopanas =-36, Odds(Bgpopamas < 0)=41.86%, predict
lower AbsAsynchrony. This suggests that in general, origi-
nal track versions are easier to synchronise to, the higher
the SFOBand3, whereas SFOBandl and SFOBand2 do not
show an effect. This can be seen in the marginal effects
plots in Figure 4, where flat lines are observed for
SFOBandl and SFOBand?2, and a steep downwards slope is
observed for SFOBand3 in the original stimuli.
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Figure 4. Marginal effects plots for the change in predicted AbsAsynchrony based on the (a) SFOBand/, (b) SFOBand2, and
(c) SFOBand3. All SF values are given in SDs. Grey areas indicate 95% Cls. We only see strong evidence for an effect in SFOBand3.
Specifically, the higher SFOBand3 of an original song, the better synchronisation performance. This is indicated by the downwards

slope in the Figure 4c.

Effect of modified spectral flux on synchronisation performance.
We obtained no compelling evidence that higher SFBand|,
Bsesanar =02, EE sppupay =20, 0dds(Bgpp,q < 0)=
.86, or SFBand2, Bgpuir=—07, EE sppanar=-20, Odds
(Bsppana» < 0)=1.8, predicts changes in AbsAsynchrony.
However, we obtained strong evidence that higher
SFBand3 predicts higher AbsAsynchrony, Bgppnaz =28,
EE sppanas =-12, Odds( Bgp. 05 > 0)=141.29* This can
be seen in Figure 5 with the flat lines for SFBandl and
SFBand2, and the steep upwards slope for SFBand3.
Higher spectral flux in SFBand3 is indicative of lower syn-
chronisation performance in the modified stimuli.

Interaction of original spectral flux and modified spectral flux
on synchronisation performance. We observe strong evi-
dence that SFOBandl X SFBandl predicts AbsAsychrony,
Bsropanarssrpanat = —41s  EEspopanarsrsana1 =08, Odds
(Bsrosandi*srpanar <~ 0)=>9999%, as does SFOBand2 X
SEBand2, Bspopanar sesandz =305 EEspoBana2+srpana2 =08,
0dds(Bsropanar*srpanas > 0)=>>9999*. However, we only
obtain weak evidence for an SFOBand3 X SFBand3,
Bsropanasesrsanas == 17> EE spopanasesppanas =12, Odds
(Bsropandy srsanas < 0)=10.82, interaction. As shown in
Figure 6, the interaction between SF and SF0 is very dif-
ferent for each of the three bands. If an original song has
low spectral flux in band 1 (SFOBand1), further decreasing

it increases synchronisation performance. This is indicated
by upwards slope of the blue line in Figure 6a. Similarly, if
an original song has high spectral flux in band 1
(SFOBandl), further increasing it also increases synchro-
nisation performance. This is indicated by the downwards
slope of the red line in Figure 6a. The interaction in band 2
follows the opposite pattern. If an original track has low
spectral flux in band 2 (SF0Band?), increasing it improves
synchronisation performance. This is indicated by the blue
line in Figure 6b. In contrast, if an original track has high
spectral flux in band 2 (SFOBand?), increasing it decreases
synchronisation performance (red line, Figure 6b). We do
not observe compelling evidence for an interaction in band
3. In this case, regardless of the amount of spectral flux in
band 3 of the original tracks (SFOBand3), increasing the
spectral flux always decreases performance. This is indi-
cated by the upwards slopes in all lines in Figure 6¢. How-
ever, tracks that have high spectral flux in band 3
(SFOBand3) to begin with, show better synchronisation
performance. This is indicated by the red line in Figure 6¢
consistently showing the lowest absAsychronies.

In beat clarity and beat tracking confidence, we con-
sidered two computational methods for extracting perio-
dicity and beat confidence of a given stimulus. We
deployed a separate Bayesian mixed-effects models pre-
dicting absAsynchronies based on pulseClarity and
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Figure 5. Marginal effects plots for the change in predicted AbsAsynchrony based on the (a) SFBand |/, (b) SFBand2, and (c) SFBand3
of a song version.

All spectral flux values are given in SDs. Grey areas indicate 95% Cls. We only see strong evidence for an effect in SFBand3. Specifically, the higher
SFBand3, the worse synchronisation performance, as indicated by higher AbsAsynchrony.
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Figure 6. Marginal effects plots for the change in predicted AbsAsynchrony based on the interaction between SFBand! (a), SFBand2
(b), and SFBand3 (c) of a song version, and SFO of the respective band in the original version.

Lower absAsynchronies indicate better synchronisation performance. The interaction between SFO and SF shows very different behaviour for each
of the three bands. While increasing SFBand3 always decreases performance regardless of SFOBand3, modifications of SFBand/ and SFBand2 can
have both positive and negative effects on performance depending on SFO in the respective band. All SF values are given in SDs. The shaded areas
between thin lines indicate 95% Cls around the bold effect lines.



Beveridge et al.

485

(a) (b)
1.00- 1.00-
0.75- 0.75-
0.50- 0.50- .

Probability

SFBand2

43210 1 2 4 0 1

()
1.00-
0.75-
Liking Rank
|E| 1(Most liked)
[
050- . K

SFBand3

Figure 7. Liking rank probability based on relative spectral flux in bands |, 2, and 3 in relation the spectral flux in the original songs
(Liking rank | =most liked, 7 =least liked). Reducing (a) SFBand!, (b) SFBand2, or (c) SFBand3 results in substantially less liking. The
shaded areas between thin lines indicate 95% Cls around the bold effect lines.

beatConfidence. The model was provided with the same
random effects structure as the models before. Contrary
to the hypothesis, we observed little to no evidence
that pulseClarity, B useciariy =—9% EE puseciariny =14
Odds(ﬂpulseaamy < 0)=2.38, or beatConfidence,

beatConfidence = 65» EE beatConfidence = 059 Odds(ﬁbeatConﬁdence
> 0)=11.08, predict absAsynchronies.

Preference

A Bayesian mixed-effects model was used to predict the
ordinal scaled liking ratings (1 =most liked, 7=least liked)
using SFOBandl, SFOBand2, SFOBand3, and SFBandl,
SFBand2, SFBand3 as predictors. As done in the synchro-
nisation analysis (see Synchronisation section), interac-
tions between the spectral flux of the original track (SF0),
and the spectral flux of a given track version (SF) were

defined for each band: SFBandl X SFOBandl, SFBand2
X SFOBand2, SFBand3 X SFOBand3. The model was pro-
vided with a random slope over participant for all predic-
tors, as well as their interactions.

We obtained strong evidence that reducing SFBandl
predicts less liking, Bgeg,, .1 =44, EE gy =21, Odds
(Bsrpanan < 0)=56.23*. We also obtained strong evidence
that decreasing SFBand?, Bsrpanda ==56, EE p i =23,
Odds(Bsppanar < 0)=120.62%, as well as decreasing
SFBand3, Bgppangs ==93, EE sppynqs =26, Odds(Bsepanas
< 0)=3999*%, predict less liking. This can be seen in the
three panels of Figure 7. Figures 7a (SFBandl), 7b
(SFBand?), and 7¢ (SFBand3) show that the probability of
high liking (e.g, rank 1 in red) increases with higher
SFBandl, SFBand2, and SFBand3 values, respectively,
while the probability for lower liking (e.g., rank 7 in pur-
ple) increases when song versions are modified to have
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less spectral flux compared with the original version in any
of the three bands. All other predictors and interactions
yielded no to weak evidence (all evidence ratios <6.26).
Taken together this suggests that decreasing spectral
flux in bands 1, 2, and 3 relative to the original versions,
decreases the relative liking of the modified version.

Discussion

This study investigated the effect of low-frequency equali-
sation on sensorimotor synchronisation performance and
preference.

Our first step was to analyse synchronisation perfor-
mance while participants listened to the original versions
of the stimuli. In this analysis, we found that higher levels
of spectral flux in sub-band 3 (SFOBand3 [100-200Hz])
led to better synchronisation performance among our par-
ticipants. In contrast, we found no effect for spectral flux,
pulse clarity, or beat confidence in sub-band 1 (SFOBand1
[0-50 Hz]) and sub-band 2 (SF0Band?2 [50-100 Hz]).

Our second step was to examine synchronisation per-
formance in response to modified versions of the stimuli.
Interestingly, we discovered that an increase in spectral
flux in sub-band 3 (SFBand3), decreased synchronisation
performance. We found no evidence of an effect between
SMS performance and spectral flux in sub-band 1
(SFBandl), spectral flux in sub-band 2 (SFBand2), pulse
clarity, or beat confidence. These results are interesting
when contrasted with the analysis of the original version of
the stimuli. While original track versions with higher SF in
sub-band 3 show better synchronisation performance,
results with the modified versions have shown that simply
increasing the SF in sub-band 3 (increased by proxy of fil-
tering in this study) will not necessarily result in better
synchronisation performance. In fact, results show quite
the opposite effect, with increased SF in sub-band 3 being
detrimental to synchronisation performance.

To further elucidate the effects of sub-band manipula-
tion on SMS performance, we examined the interaction
effects between the original and modified version of the
stimuli. For sub-band 1 we found that if an original track
had low spectral flux then moving to a version with higher
spectral flux decreased performance. Conversely, if an
original track had a high level of spectral flux then moving
to a version with higher spectral flux increased perfor-
mance. In sub-band 2 we found the opposite. If an original
track had a low level of spectral flux then moving to a ver-
sion with higher spectral flux increased performance. If the
original track had a high level of spectral flux then moving
to a version with a higher level of spectral flux decreased
performance. In sub-band 3 we found no interaction effect,
and moving to versions with higher spectral flux always
decreased performance. A possible explanation for these
findings may come from the equalisation “rules of thumb”
for mixing popular music of the type used in this study.

Sub-band 1 is within the 16-60 Hz frequency region where
sound is felt more than heard. It can provide a track with a
subjective measure of “power” but excessive boosting of
this band can lead to a “muddy” sound in the final mix.
Here, “muddy” is defined as a lack of clarity or definition
of the sounds/instruments within this band. Our findings
suggest that tracks originally mixed with low sub-band 1
energy benefit from a further reduction in this band with
respect to SMS performance. It is possible that no useful
rhythmic acoustic information exists in these mixes (or in
the original frequency content of the song), and boosting
these frequencies results in “muddying” the mix or losing
clarity. However, mixes produced with well defined spec-
tral activity in sub-band 1 benefit from a boost in this band.
It is possible they have been originally mixed with “good
power” and a boost just helps synchronisation.

Sub-band 2 is within the 60-250 Hz range where instru-
ments like the electric bass guitar have their fundamental
frequencies. If frequencies within this range are boosted
too much, the mix can sound subjectively “boomy.”
Boomy is a term linked to the capabilities of a loudspeaker
transducer itself. Too much energy in sub-bands 2 and 3
can overdrive the speaker and wash out the frequencies in
this band. Our findings suggest that tracks originally mixed
with low energy in sub-band 2 benefit from gain in this
sub-band with respect to SMS performance. Tracks orig-
nally mixed with high energy in sub-band 2 lose synchro-
nisation power from a boost. This suggests that tracks
intentionally mixed with high energy in sub-band 2 might
already be at the physical limits of frequency reproduction,
and further increasing the energy in this band can “wash
out” the spectral content useful for synchronisation due to
boominess.

In sub-band 3 we found that no matter what level of
sub-band energy the orignal tracks versions were produced
with, moving to a version with boosted sub-band 3 (and
hence, boosted SFBand3) is detrimental to synchronisa-
tion. It is very likely that mixing engineers instinctively
know the optimal amount of energy required in sub-bands
2 and 3 to maximise the capabilities of the speaker systems
before it becomes too much. If tracks are further equalised
(for example, by the music consumer) to have more energy
in sub-band 2 or sub-band 3 (and hence more spectral flux
in these bands), they might be pushed over the limit, losing
clarity and having a negative effect on SMS performance.
From a mechanistic perspective, it could be that what we
observe here, is manipulating the ease through which neu-
ral populations can entrain to the rhythmic properties
within the music (Herff et al., 2020; Nozaradan et al.,
2011). This explanation could be further tested in the
future through neuroscientific studies that measure neural
entrainment to beat frequency, as function of the audio
manipulations explored in this work.

Overall our results point to the importance and skill of
the mixing engineer in the production of the original
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music tracks. It seems that there is a very fine margin
before further manipulations become detrimental for syn-
chronisation performance: sub-band 3 was balanced in the
mixes such that any increase from the original levels
would cause lower synchronisation performance. Our
results also highlight that while benefits for synchronisa-
tion can be obtained by means of equalisation (which in
turn modifies sub-band spectral flux), there is no golden
rule that can be applied to every song. The extent to which
the synchronisation potential of a song can be improved
by means of equalisation (or by increasing the sub-band
spectral flux) will greatly depend on both the original
musical content of the song, and on the way the song was
originally mixed.

Results from the music preference task showed a dif-
ferent facet of the effects of low-frequency equalisation:
any attenuation in the energy of any of the sub-bands
(which in turn results in a decrease of the sub-band spec-
tral flux) resulted in less liking. These results are interest-
ing as they suggest that a given equalisation technique
may not categorically show the same effect on synchroni-
sation as it does on liking. Theoretically, this could lead to
scenarios in which listeners synchronise better to songs
that they do not enjoy the most. As a consequence, this
means that mixing a song to increase liking, might require
different steps compared with mixing a song to increase
synchronisation.

Our initial hypothesis stated that increased low-fre-
quency energy would result in improved sensorimotor
synchronisation performance, irrespective of band manip-
ulation. When examining the original unmodified tracks
we found that higher spectral flux in sub-band 3 was indic-
ative of higher SMS ability. These findings are consistent
with (Burger et al., 2013) albeit in a different context
(music-induced whole-body movement vs. directed abduc-
tion/adduction of the arm). In addition, when we began
manipulating the original tracks by means of sub-band fil-
tering, we found that additional sub-bands may also influ-
ence SMS performance. This points to a somewhat more
complex relationship between low-frequency energy,
spectral flux, and sensorimotor synchronisation perfor-
mance. The full nature of which is still an open question,
and given that only one sub-band was manipulated at any
one time in this study, future research will focus on these
interactions.

Although our original stimuli are drawn from the same
corpus, it is possible that our results could by influenced
by our track selection and manipulation procedures. To
avoid carry over effects between the preference and syn-
chronisation tasks, seven different tracks were selected for
each task. Despite exhibiting similar distributions, it is
possible that this selection process affected comparability
between the tracks and influenced our results. Furthermore,
tracks in the synchronisation task were artificially modi-
fied to set a uniform tempo of 120 BPM. Our motivation

for this tempo manipulation was twofold: First, it ensured
tracks were optimised for synchronisation (Moelants,
2002). Second, it allowed us to control for tempo in our
experimental design. When controlling for tempo in addi-
tion to meter (all stimuli had 4/4 time signature), music
genre and to a certain extent instrumentation, we still
observed a difference in synchronisation ability. In a future
study, we hope to further curate our corpus or modify our
experimental design to ensure comparability. Furthermore,
it is worth noting that the sensorimotor task only allows
conclusions on a population level, whereas the liking task
also allows interpretation on an individual level. This is
because not all participants listened to all version-song
combinations in the sensorimotor task, instead, the version
song combinations were counterbalanced across the sam-
ple. This was necessary to address muscle fatigue within
the present task.

Another important limitation to mention is the play-
back system. Headphone frequency responses are nearly
never flat, and the specific model used here shows a rela-
tively little energy below 50 Hz.* However, as manipulat-
ing SFBandl, which mainly considers energy below
50 Hz, affected behaviour in both tasks, we can conclude
that the headphones used here were adequate to represent
the experimental manipulations. Nevertheless, precise
effect sizes in this study should be interpreted with care
and not be used as the basis of equalisation practise.
Future studies should attempt to replicate the present
studies using different playback systems, to ensure that
the present results are not specific to the headphone pair
used. Indeed, a systematic investigation of the interaction
between playback system and synchronisation as well as
preferences responses would provide actionable insights
for audio engineers.

Finally, another possible limitation of our study is the
format for our movement synchronisation task. In this
study, we measure the sensorimotor synchronisation per-
formance based on an abduction/adduction of the right arm
in the frontal plane. This choice of movement was moti-
vated by a specific use case of tele-rehabilitation, in which
arm abduction/adduction is commonly used to assess the
range-of-motion (ROM) and is a constituent part of many
more complex functional tasks (i.e., dressing, hair comb-
ing). Despite its contextual relevance in this study, this
movement is not typical in the assessment of SMS and
may have influenced the results. In a future study, we aim
to replicate our results using a more common movement
paradigm (e.g., finger tapping).

Conclusion

This study examined the relationship between low-fre-
quency equalisation, preference, and sensorimotor syn-
chronisation. Our findings indicate that the frequency
components in the original versions of music were finely



488

Quarterly Journal of Experimental Psychology 75(3)

balanced. Balancing the low-frequency components that
convey rhythm is much more nuanced than broad sub-
band boost/attenuation, and there appears to be no “golden
rule” for balancing/mixing that is applicable to all songs.
This is even more interesting when considering our finding
of independence between sensorimotor synchronisation
performance and preference. An overall boost of low fre-
quencies is likely to increase liking but not necessarily
synchronisation. Further research should examine the
effects of more fine-grained equalisation techniques and
the interaction between instrumentation, equalisation, and
synchronisation.
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