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Introduction

Music makes us move. This desire to move in response to 
music can be attributed to specific rhythmic structures and 
acoustic characteristics, collectively known as “groove” 
(Pressing, 2002). Prior research has shown that the experi-
ence of groove is consistent across individuals (Janata 
et al., 2012; Madison, 2006) and is largely independent of 
music style and genre (Madison, 2006). Furthermore, the 
feeling of groove is positively correlated with movement 
accuracy and perceived ease of motor entrainment (Janata 
et al., 2012; Madison et al., 2011). The music factors that 
represent “groove” are a subject of much research that 
broadly examines rhythmic (Madison et al., 2011; Pressing, 
2002) and acoustic features (Stupacher et al., 2013, 2016). 
The present investigation predominantly focuses on the 
role of acoustic features in groove, specifically their effects 
on sensorimotor synchronisation performance.

In many forms of music, the instruments responsible 
for driving groove are bass (e.g., bass guitar) and percus-
sion (e.g., drum kit) (Pressing, 2002). It is important to 
note that these instruments often perform in the lower 
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Abstract
Equalisation, a signal processing technique commonly used to shape the sound of music, is defined as the adjustment 
of the energy in specific frequency components of a signal. In this work, we investigate the effects of equalisation on 
preference and sensorimotor synchronisation in music. A total of 21 participants engaged in a goal-directed upper body 
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music track. These music tracks were then used in a movement synchronisation task. Bayesian mixed-effects models 
revealed different synchronisation behaviours in response to the three sub-bands considered. Boosting energy in the 
100–200 Hz sub-band reduced synchronisation performance irrespective of the sub-band energy of the original version. 
An energy boost in the 0–50 Hz band resulted in increased synchronisation performance only when the sub-band energy 
of the original version was high. An energy boost in the 50–100 Hz band increased synchronisation performance only 
when the sub-band energy of the original version was low. Boosting the energy in any of the three sub-bands increased 
preference regardless of the energy of the original version. Our results provide empirical support for the importance of 
low-frequency information for sensorimotor synchronisation and suggest that the effects of equalisation on preference 
and synchronisation are largely independent of one another.
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frequency registers (Butterfield, 2010; Pressing, 2002). 
The preference of using instruments in specific frequency 
registers to induce rhythmic movements clearly exempli-
fies the acoustic dimension of groove. Indeed, the link 
between low frequencies and movements has been evi-
denced in motor tasks within the context of contemporary 
dance music, where participants were shown to display a 
higher degree of tempo entrainment when the dynamic 
level of the bass drum was increased (Van Dyck et  al., 
2013). Additional evidence for the connection between 
low frequencies and movements comes from studies show-
ing that during exercise, boosted bass frequencies can be 
used to increase arousal and encourage rhythmic move-
ments (Karageorghis et  al., 2012). Furthermore, intense 
low-frequency sounds evoke responses in the vestibular 
system which – besides generating pleasurable sensations 
(Todd & Cody, 2000) – plays an important role in musical 
rhythm perception (Trainor et  al., 2009). In a study that 
artificially manipulated the frequency range of bass and 
bass drum, tapping variability was lower when the bass 
instruments contained frequency components in the low 
bass range (where the played bass line was one octave 
lower than the original, and the peak frequency of the bass 
drum was reduced from 140 to 40 Hz) (Stupacher et  al., 
2016). A “low-tone benefit” has also been observed in 
studies that require synchronising finger tapping with 
auditory cues, revealing that pitches in the lower registers 
improved synchronisation accuracy compared with pitches 
in higher registers (Hove et  al., 2014). Taken together, 
these studies emphasise a connection between low-fre-
quency components in music and motor activity.

Music listeners as well as professional audio engineers 
have the means to directly manipulate low-frequency 
components of music. This is often times achieved 
through equalisation. Equalisation (EQ) is a signal pro-
cessing technique that allows a listener to adjust the 
energy of specific frequencies within the audible band-
width (Huber & Runstein, 2005). In consumer audio play-
back devices, equalisation is commonly applied to specific 
frequency ranges known as sub-bands. Rhythm-carrying 
instruments, for example, typically inhabit the lowest sub-
bands, with the low presence of the bass kick drum in the 
50–100 Hz range and the electric bass guitar in the 41.2–
343.2 Hz (E1 to F4) range (Hepworth-Sawyer & Hodgson, 
2016; Huber & Runstein, 2005). Equalisation provides 
substantial control over frequency content, allowing lis-
teners to boost or attenuate these sub-bands based on their 
requirements or preferences. However, excessive manipu-
lation of frequency content can also be detrimental and 
can result in loss of clarity between instruments. Among 
professional music engineers and audiophiles alike, there 
exist some common “rules-of-thumb” concerning equali-
sation of low-frequency content. In the range of 16–60 Hz, 
which gives the bass a sense of power (Izhaki, 2018), 
excessive boosting can make the music sound muddy. 

This can lead to a loss of definition between instruments 
(Owsinski, 1999). In the 60–250 Hz frequency range, 
which encompasses the fundamental frequencies of the 
rhythm section (Izhaki, 2018) and gives the bass sound 
body and depth, excessive boosting may overdrive the 
reproduction loudspeaker. This can make music sound 
what is termed as boomy (Owsinski, 1999). It is important 
to note, that while the goal of equalisation is to change the 
perceptual sound qualities of a song, it can also implicitly 
produce changes in acoustic features (e.g., spectral flux, 
pulse clarity, etc.) relevant to aspects of groove and senso-
rimotor synchronisation.

The frequency content and spectral characteristics of a 
given song can be described with numerous acoustic fea-
tures. Spectral flux (i.e., a measure of the change in the 
spectral content of a signal between different time 
instances), in particular, has proven to be a useful charac-
terisation of groove and hence a good “anchor” for senso-
rimotor synchronisation tasks. In a number of behavioural 
studies, specific relationships between spectral flux meas-
ured in the low frequencies and music-induced movement 
have been investigated, most notably those conducted by 
Burger and colleagues (2013, 2014, 2018). In the earliest 
of these studies, where participants were asked to move to 
music, a positive correlation between head movement 
speed and spectral flux in the 50–100 Hz frequency sub-
band was reported. In Burger et al. (2014) using the same 
movement instructions, participants demonstrated peri-
odic body movements in the mediolateral (sideways) and 
anteroposterior (forward-back) planes that correlated with 
spectral flux in the same sub-band (50–100 Hz). These 
movements were found to synchronise to different metri-
cal levels simultaneously and interchangeably, suggesting 
a complex relationship between periodic movement, low-
frequency spectral flux, and meter (Burger et al. 2014). In 
a later study examining music-induced synchronisation 
ability, Burger et al. (2018) reported improved synchroni-
sation ability to music with high spectral flux in the 100–
200 Hz sub-band. More specifically, these results showed 
an improvement in synchronisation ability in vertical feet 
and hip movement at the beat level. These studies guide 
the present investigation in using spectral flux to charac-
terise low-frequency content in music.

It is important to note that the above studies also sug-
gest that synchronisation ability may be influenced by 
tempo (Burger et al., 2018). Generally, tempo synchronisa-
tion can be more easily achieved when music is played at 
a tempo that affords easy synchronisation (Madison et al., 
2011). Previous research suggests synchronisation to 
music is most easily achieved at a moderate tempo corre-
sponding to beat periods (i.e., inter-beat-intervals) between 
450 and 700 ms (Fraisse, 1982; Parncutt, 1994; van 
Noorden & Moelants, 1999), with a preference for tempi 
around 120 BPM, with an inter-beat-interval around 
500 ms (Moelants, 2002).
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Pulse clarity is another acoustic feature that has been 
studied in the context of sensorimotor synchronisation. 
Pulse clarity attempts to characterise the high-level 
dimension that conveys how easily a listener can per-
ceive the metrical pulsation in a given musical piece 
(Lartillot, Eerola, et  al., 2008). Results of previous 
research show correlations between the amount of whole-
body movements and pulse clarity (Burger et al., 2013) 
with highest correlation exhibited between superior-infe-
rior movements at the beat level (Burger et  al., 2014). 
Pulse clarity was also examined in an experiment involv-
ing a goal-directed (walking) movement (Prithvi et  al., 
2019), and it was observed that reduced pulse clarity 
resulted in poorer synchronisation ability. Following 
these findings, we also include two separate measures of 
pulse clarity in our study and investigate their effect on 
sensorimotor synchronisation.

Sensorimotor synchronisation performance is most 
commonly assessed using the finger tapping paradigm. In 
such a paradigm, performance is assessed by comparing 
the alignment between a specific movement event (e.g., a 
finger tap) and the rhythmic events in the reference signal 
(e.g., a metronome click or the beat of music). The time 
difference between the movement event and the reference 
rhythmic event is known as the synchronisation error or 
asynchrony. Sensorimotor synchronisation ability has 
been assessed in a variety of contexts and for a variety of 
movements including finger tapping in motor control 
research (Repp, 2005; Repp & Su, 2013), upper-limb 
movement in the analysis of skilled movements in musi-
cians (Beveridge et al., 2020; Fujii et al., 2009), lower limb 
exercise performance (Buhmann et al., 2018), and lower 
limb assessment of neurological disorders (Stegemöller 
et al., 2009; Verheul & Geuze, 2004).

Given our study design, it is important to consider aes-
thetic preference as an established mediating variable. For 
example, the “loudness-war” refers to a specific mixing 
trend that maximises perceived loudness on the assump-
tion that loudness correlates with preference (Vickers, 
2010) (also see Hove et al., 2019). Indeed, in a task that 
provided participants with the direct opportunity to apply 
audio manipulations to musical songs, they preferred 
mixes with more energy in the bass frequencies 
(Dobrowohl et  al., 2019), and listeners tend to prefer a 
higher loudness level proportional to their liking of the 
music (Cullari & Semanchick, 1989). Furthermore, prior 
research has shown a relationship between musical pref-
erence and performance in simultaneously executed tasks 
(North & Hargreaves, 1999), engagement with the envi-
ronment (North & Hargreaves, 1996), and willingness to 
move (Witek et al., 2014). In addition, the music-induced 
desire to synchronise movement is often considered 
enjoyable. Indeed, prior studies have shown that higher 
aesthetic preference, predicts higher perceived ratings of 
groove (Senn et al., 2019). As a result, should an effect of 

low-frequency equalisation be observed, a possible expla-
nation would be that a particular low-frequency manipu-
lation may have influenced aesthetic preference, which in 
turn, increases task performance and willingness to move 
in the synchronisation task.

Specifically, this study investigates the relationship 
between sensorimotor synchronisation performance and 
low-frequency equalisation in music. We conducted a 
music movement experiment in which participants were 
asked to perform a goal-directed movement in time with 
manipulated versions of novel music tracks. Track manip-
ulation involved boosting or attenuating three low-fre-
quency sub-bands (0–50, 50–100, and 100–200 Hz). This 
was achieved by applying different types of filters to the 
stimuli that increase or decrease energy in these sub-bands. 
The manipulation procedure yielded seven versions of 
each track (one original, unmodified version, one attenu-
ated at each sub-band, and one boosted at each sub-band). 
By applying these filters we are in effect causing spectral 
modifications to the stimuli. While these spectral modifi-
cations have a clear impact on musical features (like spec-
tral flux, pulse clarity, and beat confidence), they do not 
modify tempo, style, or instrumentation of the different 
versions of the stimuli. This described manipulation is 
analogous to the equalisation process. To control for poten-
tial confounding effects of tempo, this study only uses 
stimuli with a tempo of 120 BPM. In the synchronisation 
task, participants performed an arm abduction/adduction 
movement commonly used as part of motor rehabilitation 
regimes. Synchronisation performance was assessed by 
means of synchronisation error.

To account for the influence of aesthetic preference, we 
assess whether the relationship between preference and 
low-frequency equalisation is similar to the relationship 
between low-frequency equalisation and sensorimotor 
synchronisation. In a separate procedure, we measured 
self-report measures of preference in response to a differ-
ent set of music tracks manipulated in the same manner as 
in the synchronisation task. A preference task immediately 
followed a movement synchronisation task. Each partici-
pant completed a total of seven movement synchronisation 
tasks, each one followed by a preference task. The goal of 
alternating movement and preference tasks was to reduce 
possible carry over effects in the participants when syn-
chronising to stimuli with the same tempo (120 BPM in 
our case).

This study addresses two main research questions. 
First, we investigate how sensorimotor synchronisation 
ability is affected by low-frequency equalisation. Second, 
we study how the same low-frequency manipulations 
affect preference and whether this effect is similar to that 
observed in the sensorimotor synchronisation task. 
Following the notion that groove is “carried” by rhythmic 
instruments in the low-frequency register, and the reported 
correlation between higher groove and ease of motor 
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entrainment, we hypothesised that increased low-fre-
quency energy would result in improved sensorimotor 
synchronisation performance and preference, irrespective 
of band manipulation.

Materials and methods

Participants

A total of 21 participants took part in the study (9 female, 
12 male, M = 31 years, SD = 7.56 years). Three participants 
were left-handed and 18 right-handed. Eight participants 
had received formal musical education. All participants 
gave their informed consent before the start of the study, 
and were free to withdraw from the study at any point. 
Ethical approval for this study was obtained by the Human 
Biomedical Research Council Institutional Review Board 
(IRB Ref 2018-002), Agency for Science, Technology, and 
Research (A*STAR), Singapore.

Stimuli

Seven songs were selected for the synchronisation task, 
and another seven songs were selected for the preference 
task. No songs were shared between the two tasks to avoid 
potential carry over or order effects, as music in particular 
induces resilient memory traces (Herff et al., 2018, 2019). 
For the same reason, song order was randomised in both 
tasks. For each song, there were seven differently modified 
versions.

All stimuli were selected from the MUSDB18 corpus 
(Rafii et al., 2017) (see Table 1 for the list of audio stim-
uli). MUSDB18 is a freely available dataset comprising 
150 multi-track recordings of mostly rock and pop music, 
compiled for use in research in the music sound source 
separation community. Besides instrumental stems, 
MUSDB18 also provides a mix for each track in the cor-
pus. All tracks are non-commercial recordings, and so are 
completely unfamiliar to the participants. Selected seg-
ments were 15 s long, were in a time signature of 4/4, and 
had similar instrumentation, including drums, bass, 
accompanying instruments and a lead singer (female or 
male). All segments were extracted from the mixed track 
included in the corpus. The set of tracks used for the 

preference task have tempi in the 87–151 BPM range, and 
were used without any tempo modifications. The set of 
tracks used in the synchronisation task originally had 
tempi in the 113–127 BPM range. However, the tempo of 
all the tracks in the synchronisation set was modified to 
120 BPM using the default “Change Tempo” effect in 
Audacity1 (version 2.3.0, high quality stretching option 
enabled). This tempo modification ensured synchronisa-
tion tracks were at the preferred tempo for sensorimotor 
synchronisation (Moelants, 2002). Tracks in the prefer-
ence task were left unmodified to reduce carry over effects 
from repeated synchronisation tasks with tracks at 120 
BPM. As the preference task was web-based (see the 
“Music preference task” section), this alternating task 
arrangement had the additional benefit of providing respite 
from the physical activity of the movement synchronisa-
tion task. Tracks presented in the synchronisation task 
were preceded with an extra audio segment that repre-
sented a four beat count in. This count was provided by a 
tone similar to that of a metronome. The tracks in the pref-
erence set were kept in their original stereo format, while 
the tracks in the movement set were down-mixed from 
stereo to mono (single-channel) to remove possible effects 
of the panning in the mix on sensorimotor synchronisation. 
The process of down-mixing to mono essentially removes 
any spatial/location cues from the different musical instru-
ments in the mix. All the tracks have a sampling frequency 
of 44,100 Hz.

To modify the spectral characteristics of the stimuli, 
and assess its impact on sensorimotor synchronisation, a 
set of filters were designed with the goal of attenuating or 
boosting the energy in certain frequency bands. While 
there are potentially many ways of modifying the music 
tracks, we argue that using filters commonly used in audio 
processing (e.g., in the equalisation process) allows us to 
seamlessly modify the music tracks without creating audi-
ble distortions or changing the auditory experience of the 
participants beyond a simple equalisation. To make the 
modifications of the music files as transparent and congru-
ent as possible with the feature extraction process, the cut-
off frequencies of the filters were chosen such that they 
coincide with those of the sub-bands used in the spectral 
flux calculation (see the “Music feature extraction” sec-
tion). In particular, the boundaries of the three lowest 

Table 1.  List of tracks from the MUSDB18 dataset used as stimuli in the experiment.

Movement set Preference set

Buitraker—Revo X Al James—Schoolboy Fascination
Georgia Wonder—Siren Arise—Run Run Run
Girls Under Glass—We Feel Alright Forkupines—Semantics
James Elder & Mark M Thompson—The English Actor Little Chicago’s Finest—My Own
Phre The Eon—Everybodys Falling Apart Mu—Too Bright
The Easton Ellises (Baumi)—SDRNR Nerve 9—Pray For The Rain
Zeno—Signs Speak Softly—Broken Man
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spectral bands in the spectral flux calculation, namely, 50, 
100, and 200 Hz, were used for the filter design.

To achieve the attenuation of the spectral bands, three 
high-pass filters were implemented with 50, 100, and 
200 Hz as cut-off frequencies, respectively. The three fil-
ters were second-order elliptical filters with 3 dB pass-
band ripple, and 40 dB stopband attenuation. Similarly, to 
boost the energy of the spectral bands, three second-order 
bandpass filters with 50 Hz bandwidth, 3 dB gain, and 
with 50, 100, and 200 Hz as their higher cut-off frequen-
cies, respectively, were implemented. The choice of these 
filters was made to ensure that the filtered versions of the 
tracks were distinct from each other, while maintaining a 
natural sound without distortions, saturation, or unpleas-
ant audible effects. After the application of the filters and 
before feature calculation, peak normalisation was applied 
to all the audio files. This was done to guarantee that the 
feature calculations are not influenced by different energy 
levels in the songs. The same filtering and normalisation 
procedure was applied to all the tracks in the movement 
and preference sets. In total, seven versions of each track 
were used in the study: (1) Gain 50 Hz, (2) Gain 100 Hz, 
(3) Gain 200 Hz, (4) Original—No filters, (5) Attenuation 
50 Hz, (6) Attenuation 100 Hz, and (7) Attenuation 200 Hz. 
This amounts to a total of 49 stimuli (7 songs × 7 ver-
sions) for each set.

Apparatus

Participants’ movements were recorded with a Microsoft 
Kinect™ V2 camera (Microsoft, USA) controlled by cus-
tom software written in Unity (Unity Technologies, USA) 
and using the Kinect SDK Unity plugin.2 Skeleton joint 
position data in three axes (X = mediolateral, Y = anteropos-
terior, Z = vertical) were captured at a frame rate of 50 Hz. 

Joint position data are estimated with the Kinect, which 
uses both infrared (IR) and RGB cameras for anatomical 
landmark identification (Menna et al., 2011). Music was 
delivered by headphone (KNS-6400 Studio Monitor 
Headphones, KRK Systems, USA) and synchronised 
with the movement data in the custom software.

Procedure

Each participant completed a total of seven movement 
synchronisation tasks, each one followed by a music pref-
erence task.

Movement synchronisation task.  In each synchronisation 
task, participants performed a directed movement to the 
beat of a music track. Participants were positioned 2 metres 
from the Kinect motion capture camera. The main move-
ment involved an abduction/adduction of the right arm in 
the frontal (X–Z) plane (Figure 1). This arm abduction/
adduction movement was chosen as it is a component in 
so-called “reaching tasks,” a common assessment for 
motor impairment (Chen et al., 2016; Roby-Brami et al., 
2003; Thaut et al., 2002). Arm abduction/adduction is also 
a fundamental component in a number of functional move-
ments (e.g., dressing, hair combing). Upper and lower lim-
its of motion for each participant were defined prior to the 
beginning of the main task. Participants were instructed to 
move their arm between upper and lower limits in syn-
chrony with the music stimuli. All tracks in the movement 
set were modified to have a tempo of 120 BPM, which is 
equivalent to an inter-beat interval (IBI) of 500 ms, and in 
the preferred range for beat induction and synchronisation 
(Moelants, 2002). Participants were encouraged to begin 
attempting to synchronise immediately upon hearing the 
priming (count in) tones. No visual feedback was given to 
the participant during the procedure. This task can be tiring 
for the arm muscles, and as a result, the task was limited to 
seven trials in total per participant and interleaved with the 
preference task to avoid fatigue effects. The order in which 
the tracks were presented was fully randomised for each 
participant. Each participant listened to each track once, 
each subjected to a different filter (see the “Music feature 
extraction” section). Which filters is applied to which track 
is counterbalanced across participants, to ensure that we 
obtain equal numbers of observations of each track-filter 
pair across the sample. To avoid carry-over effects between 
the preference and the synchronisation task, different 
songs (from the same corpus) were utilised in the two 
tasks. This step also ensures that potential similarities 
between the effect of a given manipulation in the two tasks 
is indeed driven by the audio manipulation rather than a 
specific song being used in both tasks.

Music preference task.  The music preference task was con-
ducted as a web-based listening test where participants 
were asked to rank in order of preference the different fil-
tered versions of the same original song. The user interface 

Upper limit

Wrist marker

Range of 
Motion (ROM)

Lower limit

Z

X Y

Figure 1.  Experimental task showing wrist marker position 
and range of motion (ROM) bounded by upper and lower arm 
limits.
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used for the preference task is shown in the Supplementary 
Materials section, which is a modification of the web-
MUSHRA framework (Schoeffler et al., 2018). The seven 
versions of each song in the preference set (six modified 
versions plus the original song) were presented to the par-
ticipant in randomised order. Participants were free to lis-
ten to the seven versions in any order, and as many times 
as necessary to be able to rank them according to prefer-
ence (1 = most preferred, 7 = least preferred). The user 
interface only allows the participant to assign a ranking to 
a track once it has been played at least once. The order in 
which the seven preference tests were presented to each 
user was also randomised.

Data processing and synchronisation 
analysis

Using MATLAB (Mathworks, USA) we calculated the 
velocity of the wrist marker in the (vertical) Z-axis (see 
Figure 1). As each participant was instructed to synchro-
nise their movement between upper and lower limits, we 
consider the arm reversal point as the synchronisation 
point. The reversal point is defined as the zero-crossing 
point of the velocity trajectory of the projected wrist 
marker (Figure 2). These points will be referred as reversal 
points in the remainder of this article.

To extract the reference beat positions, the Madmom 
beat tracker algorithm proposed in Böck et al. (2016) was 

applied to the original version of each song. The Madmom 
algorithm has reported an F-measure score on beat track-
ing performance of 0.9 on Western pop music, music simi-
lar to that used in this study. To further verify the accuracy 
of the beat positions extracted with Madmom, one profes-
sional musician manually annotated the beat positions for 
all the original tracks. A maximum time difference (∆) 
between automatic and manual annotations of 50 ms was 
defined as the threshold for annotation accuracy. All the 
extracted beat positions had Δs below the threshold, and 
hence the annotations obtained with Madmom were used 
as reference beat positions for all tracks. Given that the 
modifications applied to each original songs only change 
the timbral characteristics of the tracks (and not the rhyth-
mic ones), the beat positions extracted from the original 
songs are also valid for all versions of the tracks.

As a measure of synchronisation error (or asynchrony), 
we calculate the absolute value of the difference between 
each arm reversal point and its corresponding beat position 
in ms. We refer to this measure as AbsAsynchrony, and 
formally define it as:

	
AbsAsynchrony arm reversal point

beat position
i i

i

=|   

 |−
	 (1)

with i  the index of the corresponding beat position and 
reversal point. It is important to note that AbsAsynchrony  
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Figure 2.  Schematic of the movement task showing asynchronies (synchronisation error) between beat locations and arm reversal 
points (denoted by points in the movement where velocity = 0). In A and B the reversal point precedes the beat location. In C and 
D the reversal point lags the beat location.
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is calculated for each individual (abduction/adduction) 
movement as indicated by the i  subscript in its definition. 
The absolute value in the calculations signifies that we do 
not discriminate between asynchronies that precede or 
succeed the beat position, that is, we do not discriminate 
between being early and being late. AbsAsynchrony is 
given in units of ms. The result is a different time series of 
AbsAsynchrony values for each participant and stimulus 
combination.

Music feature extraction

Spectral flux.  Spectral flux is a measure of the frame-wise 
change in the spectral content of an audio signal. In this 
work, we focus our analysis on the three lowest bands of 
the spectral flux calculation as obtained by the sub-band 
(“Subband”) decomposition of the MIRToolbox (version 
1.7.2) (Lartillot, Toiviainen, & Eerola, 2008). The spectral 
flux can be used to reveal periodicities in a signal such as 
beats or bars, or to measure the stability of the signal over 
time. In this study, the spectral content in the spectral flux 
calculation is taken from the short time Fourier spectrum 
calculated on time windows of a given length. The dis-
tance (or change) between two spectral frames is obtained 
by calculating the Euclidean distance between the frames.

The spectral flux of the three lower spectral bands (sub-
bands) is defined as follows for the remainder of this work:

•• SFBand1: spectral flux calculated in the 0–50 Hz 
frequency range.

•• SFBand2: spectral flux calculated in the 50–100 Hz 
frequency range.

•• SFBand3: spectral flux calculated in the 100–200 
Hz frequency range.

It is important to note that our experimental design 
does not guarantee a constant increase/decrease in terms 
of spectral flux for all of the tracks when applying a given 
filter. Spectral flux represents a measurement of how 
much the spectral content in a certain spectral band 
changes in time. However, the amount of energy in each 
of the spectral bands in consideration highly depends on 
the original song: while a given song might have heavy 
percussion and a bright bass sound evident in the spectral 
flux of the lower bands, some other song might have 
lighter percussion and less prominent bass sounds. When 
applying the filters to these two distinct songs, the results 
will naturally be very different. The filter implementation, 
however, does bring a guarantee for the stimuli in our 
dataset: the spectral flux for each band will be the lowest 
for the attenuated version, highest for the boosted version, 
and in between the filtered versions for the original track. 
This effect can be seen in Figure 3, where the spectral flux 
for the original, attenuated and boosted version for the 
first three spectral bands is shown for each song in the 
Movement Set (see Table 1).

Pulse clarity.  Pulse clarity refers to the high-level musical 
dimension that conveys how easily listeners can perceive 
the metrical pulsation in a given musical piece (Lartillot, 
Eerola, et al., 2008). In practice, the calculation of pulse 
clarity is based on an onset detection function (ODF). The 
ODF indicates the main events in the music piece that may 
contribute to the evocation of pulsation. Pulse clarity is 
then defined in terms of the autocorrelation of the ODF. In 
this work, we use an onset detection function based on 
spectral flux, and the global maximum of the autocorrela-
tion curve (“MaxAutoCor”) to calculate pulse clarity using 
the MIRToolbox (version 1.7.2) (Lartillot, Toiviainen, & 
Eerola, 2008).

Beat tracking confidence measure.  As an additional measure 
of beat clarity we include the beat tracking confidence 
measure proposed in (Zapata et al., 2012). The idea behind 
the confidence measure is to provide a numerical value 
that indicates how reliably beat information can be algo-
rithmically extracted for a given song. The measure is 
defined as the mean mutual agreement (MMA) between a 
committee of beat trackers. To calculate the confidence 
measures, the implementation available in Essentia3 library 
for music analysis was used.

Statistical approach.  The present design considers beat-
wise arm movement data as well as song-wise preferences 
rankings. However, within a song and within a participant, 
these data are non-independent. Both aggregating and 
under-utilising the data provided, as well as analysing the 
data without accounting for the underlying structural 
dependencies, can lead to flawed conclusions (Meteyard & 
Davies, 2020). To make use of the full data structure, while 
accounting for hierarchical dependencies, we use Bayes-
ian mixed-effects models (Snijders & Bosker, 2011). These 
models can account for cross-random effects between par-
ticipants and stimuli (Baayen et al., 2008), while also con-
trolling for fatigue effects that correlate with an increasing 
trial number. All models are implemented in R using the 
brms package (Bürkner, 2017).

For each analysis, we describe the architecture of the 
model and report the results of models with 1,000 warm-
ups, 10,000 iterations, on 4 chains, provided with a weakly 
informative prior t(3,0,1)  (Gelman et al., 2008). We report 
coefficient estimates ( )β , and estimated error in the coef-
ficients (EE). Evidence ratios (Odds) for the individual 
hypotheses are reported, and for convenience, we indicate 
effects that can be considered significant at an α = .05 
level with *. This corresponds to an odds ratio ⩾19 (Milne 
& Herff, 2020).

Results

Synchronisation

We refer to spectral flux calculated in the 0–50 Hz fre-
quency range as SFBand1, to spectral flux calculated in 
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the 50–100 Hz frequency range as SFBand2, and to spec-
tral flux calculated in the 100–200 Hz frequency range as 
SFBand3. We denote the original song the 0 condition, and 
define their sub-band spectral flux as: SF0Band1, 
SF0Band2, and SF0Band3. For example this means that in 
a trial in which a participant is listening to the original ver-
sion of a stimulus, SFBand and SF0Band would be identi-
cal for all three frequency bands (SFBand1 = SF0Band1, 
SFBand2 = SF0Band2, etc.). However, in a trial where par-
ticipants are listening to a version in which SFBand1 is 
boosted, then in this trial, SFBand1 would be larger than 
SF0Band1. This allows us to model the effect of boosting 
and attenuating frequency bands, as well as their possible 
interactions with the spectral flux of the original version. 
Considering the interaction between the current song ver-
sion, as well as the original song version is important. For 
example, it could be that boosting SFBand1 of a song that 
has high SF0Band1 to begin with may affect both prefer-
ence and synchronisation behaviour differently, compared 
with boosting SFBand1 of a song that has low SF0Band1 
to begin with. This is because low or high SF0Band1 could 
be indicative of a deliberate choice of the audio engineer 
that mixed the original version of a song. This choice may 
have been made to highlight or suppress a specific fre-
quency band that contains a particular instrument or an 
important part of the song.

All spectral flux values were normalised by subtracting 
the mean spectral flux value of the respective band and 

dividing by its standard deviation. A Bayesian mixed-
effects model was used to predict AbsAsynchrony. In the 
context of this work, lower AbsAsynchrony indicates better 
synchronisation performance. To predict AbsAsynchrony, 
the model was provided with SF0Band1, SF0Band2, 
SF0Band3, SFBand1, SFBand2, SFBand3, as well as the 
interaction terms SFBand1 × SF0Band1, SFBand2 × 
SF0Band2, and SFBand3 × SF0Band3. To account for 
possible sources of noise in the experimental design, the 
model was provided with a random intercept for 
TrialNumber, ArmReversalPointNumber within a trial, 
Participant and Song.

Effect of the original spectral flux on synchronisation  
performance.  Results do not show strong evidence  
that SF0Band1, βSF Band0 1 = –.07, EESF Band0 1 = .38, Odds 
(βSF Band0 1 < 0) = 1.46, or SF0band2, βSF Band0 2 = .26, 
EESF Band0 2 = .40, Odds(βSF Band0 2  > 0) = 3.21, predict 
AbsAsynchrony. However, we obtained strong evidence 
that greater values in SF0Band3, βSF Band0 3 = –.76, 
EE SF Band0 3  = .36, Odds(βSF Band0 3  < 0) = 41.86*, predict 
lower AbsAsynchrony. This suggests that in general, origi-
nal track versions are easier to synchronise to, the higher 
the SF0Band3, whereas SF0Band1 and SF0Band2 do not 
show an effect. This can be seen in the marginal effects 
plots in Figure 4, where flat lines are observed for 
SF0Band1 and SF0Band2, and a steep downwards slope is 
observed for SF0Band3 in the original stimuli.

Figure 3.  Spectral flux for all the tracks in the synchronisation study.
It can be observed that for each spectral band (SFBand1, SFBand2, SFBand3), the spectral flux of the tracks with the attenuation filter is the lowest, 
the spectral flux of the tracks with gain filters if the highest, and the spectral flux of the original version (without filtering) is in between the attenua-
tion and gain versions.
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Effect of modified spectral flux on synchronisation performance.  
We obtained no compelling evidence that higher SFBand1, 
βSFBand1 = –.02, EE SFBand1 = .20, Odds(βSFBand1 < 0) =  
.86, or SFBand2, βSFBand 2 = –.07, EE SFBand 2  = .20, Odds 
( βSFBand 2  < 0) = 1.8, predicts changes in AbsAsynchrony. 
However, we obtained strong evidence that higher 
SFBand3 predicts higher AbsAsynchrony, βSFBand3  = .28, 
EE SFBand3  = .12, Odds( βSFBand3  > 0) = 141.29*. This can 
be seen in Figure 5 with the flat lines for SFBand1 and 
SFBand2, and the steep upwards slope for SFBand3. 
Higher spectral flux in SFBand3 is indicative of lower syn-
chronisation performance in the modified stimuli.

Interaction of original spectral flux and modified spectral flux 
on synchronisation performance.  We observe strong evi-
dence that SF0Band1 × SFBand1 predicts AbsAsychrony, 
βSF Band SFBand0 1* 1 = –.41, EESF Band SFBand0 1* 1 = .08, Odds 
(βSF Band SFBand0 1* 1 < 0) = >9999*, as does SF0Band2 × 
SFBand2, βSF Band SFBand0 2* 2  = .30, EESF Band SFBand0 2* 2  = .08, 
Odds(βSF Band SFBand0 2* 2  > 0) = >9999*. However, we only 
obtain weak evidence for an SF0Band3 × SFBand3, 
βSF Band SFBand0 3* 3  = –.17, EE SF Band SFBand0 3* 3  = .12, Odds 
(βSF Band SFBand0 3* 3 < 0) = 10.82, interaction. As shown in 
Figure 6, the interaction between SF and SF0 is very dif-
ferent for each of the three bands. If an original song has 
low spectral flux in band 1 (SF0Band1), further decreasing 

it increases synchronisation performance. This is indicated 
by upwards slope of the blue line in Figure 6a. Similarly, if 
an original song has high spectral flux in band 1 
(SF0Band1), further increasing it also increases synchro-
nisation performance. This is indicated by the downwards 
slope of the red line in Figure 6a. The interaction in band 2 
follows the opposite pattern. If an original track has low 
spectral flux in band 2 (SF0Band2), increasing it improves 
synchronisation performance. This is indicated by the blue 
line in Figure 6b. In contrast, if an original track has high 
spectral flux in band 2 (SF0Band2), increasing it decreases 
synchronisation performance (red line, Figure 6b). We do 
not observe compelling evidence for an interaction in band 
3. In this case, regardless of the amount of spectral flux in 
band 3 of the original tracks (SF0Band3), increasing the 
spectral flux always decreases performance. This is indi-
cated by the upwards slopes in all lines in Figure 6c. How-
ever, tracks that have high spectral flux in band 3 
(SF0Band3) to begin with, show better synchronisation 
performance. This is indicated by the red line in Figure 6c 
consistently showing the lowest absAsychronies.

In beat clarity and beat tracking confidence, we con-
sidered two computational methods for extracting perio-
dicity and beat confidence of a given stimulus. We 
deployed a separate Bayesian mixed-effects models pre-
dicting absAsynchronies based on pulseClarity and 
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Figure 4.  Marginal effects plots for the change in predicted AbsAsynchrony based on the (a) SF0Band1, (b) SF0Band2, and  
(c) SF0Band3. All SF values are given in SDs. Grey areas indicate 95% CIs. We only see strong evidence for an effect in SF0Band3. 
Specifically, the higher SF0Band3 of an original song, the better synchronisation performance. This is indicated by the downwards 
slope in the Figure 4c.
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beatConfidence. The model was provided with the same 
random effects structure as the models before. Contrary 
to the hypothesis, we observed little to no evidence  
that pulseClarity, β pulseClarity  = –.04, EE pulseClarity  = .74, 
Odds(β pulseClarity < 0) = 2.38, or beatConfidence, 
βbeatConfidence  = .65, EE beatConfidence  = .05, Odds(βbeatConfidence  
> 0) = 11.08, predict absAsynchronies.

Preference

A Bayesian mixed-effects model was used to predict the 
ordinal scaled liking ratings (1 = most liked, 7 = least liked) 
using SF0Band1, SF0Band2, SF0Band3, and SFBand1, 
SFBand2, SFBand3 as predictors. As done in the synchro-
nisation analysis (see Synchronisation section), interac-
tions between the spectral flux of the original track (SF0), 
and the spectral flux of a given track version (SF) were 

defined for each band: SFBand1 × SF0Band1, SFBand2 
× SF0Band2, SFBand3 × SF0Band3. The model was pro-
vided with a random slope over participant for all predic-
tors, as well as their interactions.

We obtained strong evidence that reducing SFBand1 
predicts less liking, βSFBand1 = –.44, EE SFBand1 = .21, Odds 
(βSFBand1 < 0) = 56.23*. We also obtained strong evidence 
that decreasing SFBand2, βSFBand 2 = –.56, EESFBand 2 = .23, 
Odds(βSFBand 2 < 0) = 120.62*, as well as decreasing 
SFBand3, βSFBand3  = –.93, EE SFBand3  = .26, Odds(βSFBand3  
< 0) = 3999*, predict less liking. This can be seen in the 
three panels of Figure 7. Figures 7a (SFBand1), 7b 
(SFBand2), and 7c (SFBand3) show that the probability of 
high liking (e.g, rank 1 in red) increases with higher 
SFBand1, SFBand2, and SFBand3 values, respectively, 
while the probability for lower liking (e.g., rank 7 in pur-
ple) increases when song versions are modified to have 
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less spectral flux compared with the original version in any 
of the three bands. All other predictors and interactions 
yielded no to weak evidence (all evidence ratios <6.26).

Taken together this suggests that decreasing spectral 
flux in bands 1, 2, and 3 relative to the original versions, 
decreases the relative liking of the modified version.

Discussion

This study investigated the effect of low-frequency equali-
sation on sensorimotor synchronisation performance and 
preference.

Our first step was to analyse synchronisation perfor-
mance while participants listened to the original versions 
of the stimuli. In this analysis, we found that higher levels 
of spectral flux in sub-band 3 (SF0Band3 [100–200 Hz]) 
led to better synchronisation performance among our par-
ticipants. In contrast, we found no effect for spectral flux, 
pulse clarity, or beat confidence in sub-band 1 (SF0Band1 
[0-50 Hz]) and sub-band 2 (SF0Band2 [50-100 Hz]).

Our second step was to examine synchronisation per-
formance in response to modified versions of the stimuli. 
Interestingly, we discovered that an increase in spectral 
flux in sub-band 3 (SFBand3), decreased synchronisation 
performance. We found no evidence of an effect between 
SMS performance and spectral flux in sub-band 1 
(SFBand1), spectral flux in sub-band 2 (SFBand2), pulse 
clarity, or beat confidence. These results are interesting 
when contrasted with the analysis of the original version of 
the stimuli. While original track versions with higher SF in 
sub-band 3 show better synchronisation performance, 
results with the modified versions have shown that simply 
increasing the SF in sub-band 3 (increased by proxy of fil-
tering in this study) will not necessarily result in better 
synchronisation performance. In fact, results show quite 
the opposite effect, with increased SF in sub-band 3 being 
detrimental to synchronisation performance.

To further elucidate the effects of sub-band manipula-
tion on SMS performance, we examined the interaction 
effects between the original and modified version of the 
stimuli. For sub-band 1 we found that if an original track 
had low spectral flux then moving to a version with higher 
spectral flux decreased performance. Conversely, if an 
original track had a high level of spectral flux then moving 
to a version with higher spectral flux increased perfor-
mance. In sub-band 2 we found the opposite. If an original 
track had a low level of spectral flux then moving to a ver-
sion with higher spectral flux increased performance. If the 
original track had a high level of spectral flux then moving 
to a version with a higher level of spectral flux decreased 
performance. In sub-band 3 we found no interaction effect, 
and moving to versions with higher spectral flux always 
decreased performance. A possible explanation for these 
findings may come from the equalisation “rules of thumb” 
for mixing popular music of the type used in this study. 

Sub-band 1 is within the 16–60 Hz frequency region where 
sound is felt more than heard. It can provide a track with a 
subjective measure of “power” but excessive boosting of 
this band can lead to a “muddy” sound in the final mix. 
Here, “muddy” is defined as a lack of clarity or definition 
of the sounds/instruments within this band. Our findings 
suggest that tracks originally mixed with low sub-band 1 
energy benefit from a further reduction in this band with 
respect to SMS performance. It is possible that no useful 
rhythmic acoustic information exists in these mixes (or in 
the original frequency content of the song), and boosting 
these frequencies results in “muddying” the mix or losing 
clarity. However, mixes produced with well defined spec-
tral activity in sub-band 1 benefit from a boost in this band. 
It is possible they have been originally mixed with “good 
power” and a boost just helps synchronisation.

Sub-band 2 is within the 60–250 Hz range where instru-
ments like the electric bass guitar have their fundamental 
frequencies. If frequencies within this range are boosted 
too much, the mix can sound subjectively “boomy.” 
Boomy is a term linked to the capabilities of a loudspeaker 
transducer itself. Too much energy in sub-bands 2 and 3 
can overdrive the speaker and wash out the frequencies in 
this band. Our findings suggest that tracks originally mixed 
with low energy in sub-band 2 benefit from gain in this 
sub-band with respect to SMS performance. Tracks orig-
nally mixed with high energy in sub-band 2 lose synchro-
nisation power from a boost. This suggests that tracks 
intentionally mixed with high energy in sub-band 2 might 
already be at the physical limits of frequency reproduction, 
and further increasing the energy in this band can “wash 
out” the spectral content useful for synchronisation due to 
boominess.

In sub-band 3 we found that no matter what level of 
sub-band energy the orignal tracks versions were produced 
with, moving to a version with boosted sub-band 3 (and 
hence, boosted SFBand3) is detrimental to synchronisa-
tion. It is very likely that mixing engineers instinctively 
know the optimal amount of energy required in sub-bands 
2 and 3 to maximise the capabilities of the speaker systems 
before it becomes too much. If tracks are further equalised 
(for example, by the music consumer) to have more energy 
in sub-band 2 or sub-band 3 (and hence more spectral flux 
in these bands), they might be pushed over the limit, losing 
clarity and having a negative effect on SMS performance. 
From a mechanistic perspective, it could be that what we 
observe here, is manipulating the ease through which neu-
ral populations can entrain to the rhythmic properties 
within the music (Herff et  al., 2020; Nozaradan et  al., 
2011). This explanation could be further tested in the 
future through neuroscientific studies that measure neural 
entrainment to beat frequency, as function of the audio 
manipulations explored in this work.

Overall our results point to the importance and skill of 
the mixing engineer in the production of the original 
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music tracks. It seems that there is a very fine margin 
before further manipulations become detrimental for syn-
chronisation performance: sub-band 3 was balanced in the 
mixes such that any increase from the original levels 
would cause lower synchronisation performance. Our 
results also highlight that while benefits for synchronisa-
tion can be obtained by means of equalisation (which in 
turn modifies sub-band spectral flux), there is no golden 
rule that can be applied to every song. The extent to which 
the synchronisation potential of a song can be improved 
by means of equalisation (or by increasing the sub-band 
spectral flux) will greatly depend on both the original 
musical content of the song, and on the way the song was 
originally mixed.

Results from the music preference task showed a dif-
ferent facet of the effects of low-frequency equalisation: 
any attenuation in the energy of any of the sub-bands 
(which in turn results in a decrease of the sub-band spec-
tral flux) resulted in less liking. These results are interest-
ing as they suggest that a given equalisation technique 
may not categorically show the same effect on synchroni-
sation as it does on liking. Theoretically, this could lead to 
scenarios in which listeners synchronise better to songs 
that they do not enjoy the most. As a consequence, this 
means that mixing a song to increase liking, might require 
different steps compared with mixing a song to increase 
synchronisation.

Our initial hypothesis stated that increased low-fre-
quency energy would result in improved sensorimotor 
synchronisation performance, irrespective of band manip-
ulation. When examining the original unmodified tracks 
we found that higher spectral flux in sub-band 3 was indic-
ative of higher SMS ability. These findings are consistent 
with (Burger et  al., 2013) albeit in a different context 
(music-induced whole-body movement vs. directed abduc-
tion/adduction of the arm). In addition, when we began 
manipulating the original tracks by means of sub-band fil-
tering, we found that additional sub-bands may also influ-
ence SMS performance. This points to a somewhat more 
complex relationship between low-frequency energy, 
spectral flux, and sensorimotor synchronisation perfor-
mance. The full nature of which is still an open question, 
and given that only one sub-band was manipulated at any 
one time in this study, future research will focus on these 
interactions.

Although our original stimuli are drawn from the same 
corpus, it is possible that our results could by influenced 
by our track selection and manipulation procedures. To 
avoid carry over effects between the preference and syn-
chronisation tasks, seven different tracks were selected for 
each task. Despite exhibiting similar distributions, it is 
possible that this selection process affected comparability 
between the tracks and influenced our results. Furthermore, 
tracks in the synchronisation task were artificially modi-
fied to set a uniform tempo of 120 BPM. Our motivation 

for this tempo manipulation was twofold: First, it ensured 
tracks were optimised for synchronisation (Moelants, 
2002). Second, it allowed us to control for tempo in our 
experimental design. When controlling for tempo in addi-
tion to meter (all stimuli had 4/4 time signature), music 
genre and to a certain extent instrumentation, we still 
observed a difference in synchronisation ability. In a future 
study, we hope to further curate our corpus or modify our 
experimental design to ensure comparability. Furthermore, 
it is worth noting that the sensorimotor task only allows 
conclusions on a population level, whereas the liking task 
also allows interpretation on an individual level. This is 
because not all participants listened to all version-song 
combinations in the sensorimotor task, instead, the version 
song combinations were counterbalanced across the sam-
ple. This was necessary to address muscle fatigue within 
the present task.

Another important limitation to mention is the play-
back system. Headphone frequency responses are nearly 
never flat, and the specific model used here shows a rela-
tively little energy below 50 Hz.4 However, as manipulat-
ing SFBand1, which mainly considers energy below 
50 Hz, affected behaviour in both tasks, we can conclude 
that the headphones used here were adequate to represent 
the experimental manipulations. Nevertheless, precise 
effect sizes in this study should be interpreted with care 
and not be used as the basis of equalisation practise. 
Future studies should attempt to replicate the present 
studies using different playback systems, to ensure that 
the present results are not specific to the headphone pair 
used. Indeed, a systematic investigation of the interaction 
between playback system and synchronisation as well as 
preferences responses would provide actionable insights 
for audio engineers.

Finally, another possible limitation of our study is the 
format for our movement synchronisation task. In this 
study, we measure the sensorimotor synchronisation per-
formance based on an abduction/adduction of the right arm 
in the frontal plane. This choice of movement was moti-
vated by a specific use case of tele-rehabilitation, in which 
arm abduction/adduction is commonly used to assess the 
range-of-motion (ROM) and is a constituent part of many 
more complex functional tasks (i.e., dressing, hair comb-
ing). Despite its contextual relevance in this study, this 
movement is not typical in the assessment of SMS and 
may have influenced the results. In a future study, we aim 
to replicate our results using a more common movement 
paradigm (e.g., finger tapping).

Conclusion

This study examined the relationship between low-fre-
quency equalisation, preference, and sensorimotor syn-
chronisation. Our findings indicate that the frequency 
components in the original versions of music were finely 
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balanced. Balancing the low-frequency components that 
convey rhythm is much more nuanced than broad sub-
band boost/attenuation, and there appears to be no “golden 
rule” for balancing/mixing that is applicable to all songs. 
This is even more interesting when considering our finding 
of independence between sensorimotor synchronisation 
performance and preference. An overall boost of low fre-
quencies is likely to increase liking but not necessarily 
synchronisation. Further research should examine the 
effects of more fine-grained equalisation techniques and 
the interaction between instrumentation, equalisation, and 
synchronisation.
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