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Abstract—Selective hearing (SH) refers to the listeners’ capa-
bility to focus their attention on a specific sound source or a group
of sound sources in their auditory scene. This in turn implies
that the listeners’ focus is minimized for sources that are of no
interest. This paper describes the current landscape of machine
listening research, and outlines ways in which these technologies
can be leveraged to achieve SH with computational means. To
do so, a brief overview of the state-of-the-art in the fields of
detection, classification, separation, localization and enhancement
of sound sources is presented, highlighting recent advances in
each field, and drawing connections between them. Two main
challenges lie ahead in the development of SH applications:
(1) Unified methods that can jointly detect/classify/localize and
separate/enhance sound sources are required to provide both
the flexibility and robustness required for real-life SH. (2) Low-
latency methods suitable for real-time performance are critical
when dealing with the dynamic nature of real-life auditory scenes.

Index Terms—Selective Hearing, Machine Listening, Audio
Event Detection

I. INTRODUCTION

With the remarkable advances in deep learning, machine
listening, and smart hearables in the last years, the devel-
opment of devices that could enable listeners to selectively
modify their auditory scene is a step closer to reality. In this
paper, we address the concept of selective hearing (SH) from
a computational perspective, and more formally define it as
the possibility of a listener to selectively enhance, attenuate,
suppress or modify sound sources in the auditory scene by
means of a hearing device such as headphones, earbuds, etc.
Figure 1 presents a SH scenario as considered in this article:
The user is the center of their auditory scene. In this case,
four external sound sources (S1-S4) are active around the
user. A user interface allows the listener to manipulate the
auditory scene. Sources S1-S4 can be attenuated, enhanced or
suppressed with their corresponding sliders. As seen in Figure
1, the listener can define sound sources or events that should
be retained or suppressed from the auditory scene. In Figure
1, the background noise from the city should be suppressed,
whereas alarms or telephones ringing should be retained. At
all times, the user has the possibility to play an additional
audio stream such as music or the radio through the hearing
device.

Fig. 1. Selective hearing scenario

The concept of selective hearing is related to other terms
in the literature such as assisted listening [1], virtual, and
augmented auditory environments [2]. Assisted listening is an
overarching term that includes virtual, augmented, and SH
applications. We differentiate selective hearing from virtual
and augmented auditory environments by constraining selec-
tive hearing to those applications where only real audio sources
in the auditory scene are modified, without attempting to add
any virtual sources to the scene.

From a machine listening perspective, selective hearing
applications require technologies to automatically detect, lo-
cate, classify, separate, and enhance sound sources. To further
clarify the terminology around selective hearing, we define
the following terms, highlighting their differences and rela-
tionships:

Sound Source Localization refers to the ability to detect
the position of a sound source in the auditory scene. In the
context of audio processing, source location usually refers
to the direction-of-arrival (DOA) of a given source, which
can be given either as a 2-D coordinate (azimuth), or as a
3-D coordinate when it includes elevation. Some systems also
estimate the distance from the source to the microphone as978-1-7281-1817-8/19$31.00 ©2019 European Union



location information [3]. In the context of music processing,
location often refers to the panning of the source in the final
mixture, and is usually given as an angle in degrees [4].

Sound Source Detection refers to the ability to determine
whether any instance of a given sound source type is present
in the auditory scene. An example of a detection task is to
determine whether any speaker is present in the scene. In this
context, determining the number of speakers in the scene or
the identity of the speakers is beyond the scope of sound
source detection. Detection can be understood as a binary
classification task where the classes correspond to “source
present” and “source absent”.

Sound Source Classification assigns a class label from a
set of predefined classes to a given sound source or event. An
example of a classification task is to determine whether a given
sound source corresponds to speech, music, or environmental
noise. Sound source classification and detection are closely
related concepts. In some cases, classification systems encap-
sulate a detection stage by considering “no class” as one the
possible labels. In these cases, the system implicitly learns to
detect the presence or not of a sound source, and is not forced
to assign a class label when there is not enough evidence of
any of the sources being active.

Sound Source Separation refers to the extraction of a given
sound source from an audio mixture or an auditory scene.
An example of sound source separation is the extraction of
the singing voice from an audio mixture, where besides the
singer, other musical instruments are playing simultaneously
[5]. Sound source separation becomes relevant in a selective
hearing scenario as it allows to suppress sound sources that are
of no interest to the listener. Some sound separation systems
implicitly perform a detection task before extracting the sound
source from the mixture. However, this is not necessarily the
rule and hence, we highlight the distinction between these
tasks. Additionally, separation often serves as a pre-processing
stage for other types of analysis such as source enhancement
[6] or classification [7].

Sound Source Identification goes a step further and aims to
identify specific instances of a sound source in an audio signal.
Speaker identification is perhaps the most common use of
source identification today. The goal in this task is to identify
whether a specific speaker is present in the scene. In the
example in Figure 1, the user has chosen “speaker X” as one of
the sources to be retained in the auditory scene. This requires
technologies beyond speech detection and classification, and
calls for speaker-specific models that allow this fine-grained
identification.
Sound Source Enhancement refers to the process of increasing
the saliency of a given sound source in the auditory scene [8].
In the case of speech signals, the goal is often to increase
their perceptual quality and intelligibility. A common scenario
for speech enhancement is the de-noising of speech corrupted
by noise [9]. In the context of music processing, source
enhancement relates to the concept of remixing, and is often
performed in order to make one musical instrument (sound
source) more salient in the mix. Remixing applications often
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Fig. 2. Processing workflow of a selective hearing application.

use sound separation front-ends to gain access to the individual
sound sources and change the characteristic of the mix [10].
Even though source enhancement can be preceded by a sound
source separation stage, this is not always the case and hence,
we also highlight the distinction between these terms.

In order to understand the technical challenges of selec-
tive hearing technologies, this paper presents a processing
workflow for selective hearing systems in section II. Current
capabilities and challenges in the different relevant fields of
research are highlighted through an overview of the state-
of-the-art in section III. Finally, current and future research
perspectives are presented in section IV.

II. SELECTIVE HEARING IN PRACTICE

Figure 2 presents a processing workflow of a SH application
as defined in section I. The user is always the center of the
system, and controls the auditory scene by means of a control
unit. The user can modify the auditory scene with a user
interface as the one depicted in Figure 1, or with any type
of interaction such as speech control, gestures, sight direction,
etc. Once the user has provided feedback to the system, the
next step consists of a detection/classification/location stage.
In some cases, only detection is necessary, e.g., the user wishes
to keep any speech occurring in the auditory scene. In other
cases, classification might be necessary, e.g., the user wishes
to keep fire alarms in the auditory scene but not telephone
rings or office noise. In some cases, only the location of the
source is relevant for the system. This is the case, for example,
of the four sources in Figure 1: The user can decide to remove
or attenuate the sound source coming from a certain direction,
regardless of the type or characteristics of the source.

The auditory scene is first modified in the separa-
tion/enhancement stage in Figure 2. This happens either
by suppressing, attenuating, or enhancing a certain sound
source(s). As shown in Figure 2, an additional processing
alternative in SH is noise control, where the goal is to remove
or minimize the background noise in the auditory scene.
Perhaps the most popular and wide-spread technology for
noise control today is Active Noise Control (ANC) [11].

One of the biggest challenges in selective hearing ap-
plications, relates to the strict requirements with respect to
processing time. The full processing workflow needs to be
carried out with minimal delay in order to maintain the
naturalness and perceptual quality for the user. The maxi-
mum acceptable latency of a system highly depends on the



application and on the complexity of the auditory scene. For
example, McPherson et al. propose 10 ms as an acceptable
latency reference for interactive music interfaces [12]. For
music performances over a network, the authors in [13] report
that delays become perceivable in the range between 20-
25 and 50-60 ms. However, active noise control/cancellation
(ANC) technologies call for ultra-low latency processing for
better performance. In these systems, the amount of acceptable
latency is both frequency- and attenuation-dependent, but can
be as low as 1 ms for an approximately 5dB attenuation of
frequencies below 200Hz [14]. A final consideration in SH
applications refers to the perceptual quality of the modified
auditory scene. Considerable amount of work has been devoted
to methodologies for reliable assessment of audio quality
in different applications [15]–[17]. However, the challenge
for SH is managing the clear trade-off between processing
complexity and perceptual quality.

III. RELATED WORK

This section focuses on presenting a concise overview of
the state-of-the-art in machine listening relevant to SH.

A. Sound Source Detection, Classification and Identification

Perhaps some of the most relevant works for SH come from
the field of detection and classification of acoustic scenes and
events [18]. In this context, methods for audio event detection
(AED) in domestic environments have been proposed, where
the goal is to detect the time boundaries of a given sound event
within 10 sec recordings [19], [20]. In this particular case,
10 sound event classes were considered including cat, dog,
speech, alarm, and running water. Methods for polyphonic
sound event (several simultaneous events) detection have also
been proposed in the literature [21], [22]. In [21], a method
for polyphonic sound event detection is proposed where a total
of 61 sound events from real-life contexts are detected using
binary activity detectors based on a bi-directional long short-
term memory (BLSTM) recurrent neural network (RNN).

To deal with weakly-labeled data, some systems incorporate
temporal attention mechanisms to focus on certain regions of
the signal for classification [23]. The problem of noisy labels
in classification is particularly relevant for selective hearing
applications where the class labels can be so diverse that
having high-quality annotations are very costly [24]. Noisy
labels in sound event classification tasks were addressed in
[25], where noise-robust loss functions based on the categori-
cal cross-entropy, as well as ways of exploiting both noisy and
manually labeled data are presented. Similarly, [26] presents a
system for audio event classification based on a convolutional
neural network (CNN) that incorporates a verification step for
noisy labels based on prediction consensus of the CNN on
multiple segments of the training example.

Some works attempt to simultaneously detect and locate
sound events. In [27], detection is performed as a multi-label
classification task, and location is given as the 3-D coordinates
of the direction-of-arrival (DOA) for each sound event.

In the context of speech, work on voice activity detection
and on speaker recognition/identification are of great relevance
for SH. Voice activity detection has been addressed in noisy
environments using denoising auto-encoders [28], recurrent
neural networks [29], or as an end-to-end system using raw
waveforms [30]. For speaker recognition applications, a great
number of system have been proposed in the literature [31],
the great majority focusing on increasing robustness to differ-
ent conditions, for example with data augmentation or with
improved embeddings that facilitate recognition [32]–[34].

In the music domain, the classification of music instruments
can be seen as an analogous problem to sound event detection.
Musical instrument classification in both monophonic and
polyphonic settings has been addressed in the literature [35],
[36]. In [35], the predominant instrument in 3 sec audio
segments are classified between 11 instrument classes, propos-
ing several aggregation techniques. Similarly, [37] proposes
a method for musical instrument activity detection able to
detect instruments in a finer temporal resolution of 1 sec. A
significant amount of research has been done in the topic of
singing voice analysis. In particular, methods such as [38] have
been proposed for the task of detecting segments in an audio
recording where the singing voice is active.

B. Sound Source Localization

Sound source localization is closely related to the problem
of source counting, as the number of sound sources in the
auditory scene is usually not known in real-life applications.
Some systems work under the assumption that the number of
sources in the scene is known. That is the case, for example,
of the model presented in [39] that uses histograms of active
intensity vectors to locate the sources. From a supervised
perspective, [40] proposes a CNN-based algorithm to estimate
the DOA of multiple speakers in the auditory scene using
phase maps as input representations. In contrast, several works
in the literature jointly estimate the number of sources in
the scene and their location information. This is the case of
[41], where a system for multi-speaker localization in noisy
and reverberant environments is proposed. The system uses a
complex-valued Gaussian Mixture Model (GMM) to estimate
both the number of sources and the their localization.

Sound source localization algorithms can be computation-
ally demanding as they often involve scanning a large space
around the auditory scene [42]. In order to reduce compu-
tational requirements in localization algorithms, some works
attempt to reduce the search space by introducing clustering
algorithms [43], or by performing multi-resolution searches
[42] on well-established methods such as those based on
the steered response power phase transform (SRP-PHAT).
Other methods impose sparsity constraints and assume only
one sound source is predominant in a given time-frequency
region [44]. More recently, an end-to-end system for azimuth
detection directly from the raw waveforms has been proposed
in [45].



C. Sound Source Separation (SSS)

When it comes to source separation of audio signals,
the majority of the research output comes from the speech
separation and music separation communities.

The most relevant research for SH in the speech community
comes from the work on speaker-independent separation.
These systems attempt to perform separation without any
prior information about the speakers in the scene [46]. Some
systems also attempt to exploit the spatial location of the
speakers to perform separation [47].

Given the importance of computational performance in
selective hearing applications, research conducted with the
specific aim of achieving low-latency is of particular rel-
evance. Some works have been proposed to perform low-
latency speech separation (< 10 ms) with little training data
available [48]. In order to avoid delays caused by framing
analysis in the frequency domain, some systems approach the
separation problem by carefully designing filters to be applied
in the time domain [49]. Other systems achieve low-latency
separation by directly modelling the time-domain signal using
encoder-decoder framework [50]. In contrast, some systems
have attempted to reduce the framing delay in frequency
domain separation approaches [51].

Music sound separation (MSS) attempts to extract a music
source from an audio mixture [5]. A great number of sys-
tems have been proposed to deal with the problem of lead
instrument-accompaniment separation [52]. These algorithms
take the most salient sound source in the mixture, regardless of
its class label, and attempt to separate it from the remaining
accompaniment. Considerable amount of research has been
devoted to the problem of singing voice separation [53].
In most cases, either specific source models [54] or data-
driven models [55] are used to capture the characteristics
of the singing voice. Even though systems such as the one
proposed in [55], do not explicitly incorporate a classification
or a detection stage to achieve separation, the data-driven
nature of these approaches, allows these systems to implicitly
learn to detect the singing voice with certain accuracy before
separation. Another class of algorithms in the music domain
attempt to perform separation using only the location of the
sources, without attempting to classify or detect the source
before separation [4].

D. Active Noise Control (ANC)

A particularly relevant line of research in the context of
SH is the work conducted towards the development of active
noise control/cancellation (ANC) methods. ANC systems
mostly aim at removing background noise for headphone
users by introducing an anti-noise signal to cancel it out
[11]. ANC can be considered a special case of SH, and faces
equally strict performance requirement [14]. Some works
have focused on active noise control in specific environments
such as automobile cabins [56] or industrial scenarios [57].
The work in [56], analyses the cancellation of different types
of noises such as road noise and engine noise, and calls for
unified noise control systems capable of dealing with different

types of noises. Some work has focused on developing ANC
systems to cancel noise over specific spatial regions. In
[58], ANC over a spatial region is addressed using spherical
harmonics as basis functions to represent the noise field.

E. Sound Source Enhancement

In the context of speech enhancement, one of the most com-
mon applications is the enhancement of speech that has been
corrupted by noise. A great deal of work has focused on phase
processing of single-channel speech enhancement [8]. From
a deep neural network perspective, the problem of speech
denoising has been addressed with denoising autoencoders in
[59], as an non-linear regression problem between clean and
noisy speech using a deep neural networks (DNN) in [60], and
as an end-to-end system using Generative Adversarial Net-
works (GANs) in [61]. In many cases, speech enhancement is
applied as a front-end for automatic speech recognition (ASR)
systems, as is the case of [62], where speech enhancement
is approached with an LSTM RNN. Speech enhancement is
also often done in conjunction with sound source separation
approaches where the idea is to first extract the speech, to then
apply enhancement techniques on the isolated speech signal
[6].

As mentioned in the introduction, source enhancement in
the context of music most often refers to applications of
music remixing. In contrast to speech enhancement where
often the assumption is that the speech is only corrupted by
noisy, music applications most often assume that other sound
sources (music instruments) are simultaneously playing with
the source to be enhanced. For this reason, music remixing
applications always come preceded by a source separation
stage. In [10] for example, early jazz recordings were remixed
by applying lead-accompaniment and harmonic-percussive
separation techniques in order to achieve better sound balance
in the mixture. Similarly, [63] studied the use of different
singing voice separation algorithms in order to change the
relative loudness of the singing voice and the backing track,
showing that a 6 dB increase is possible by introducing minor
but audible distortions into the final mixture. In [64], the
authors study ways of enhancing music perception for cochlear
implant users by applying sound source separation techniques
to achieve new mixes.

IV. CURRENT AND FUTURE PERSPECTIVES

After analyzing the state-of-the-art presented in section III,
three general trends can be observed. First, even though earlier
methods are focused on a single task, a clear trend to develop
methods to jointly address two or more machine listening
tasks can be observed. That is the case, for example, of the
method for counting and localization in [41], the method for
localization and detection in [27], the method for separation
and classification in [65], and the method for separation and
counting in [66].

Second, a general effort to increase robustness of current
machine listening methods is evident in the community [25],



[26], [32], [34], where new emerging directions include do-
main adaptation [67] and training on data sets recorded with
multiple devices [68].

Finally, clear efforts to increase computational efficiency of
machine listening methods can be observed [48], with a clear
tendency to move into end-to-end systems capable of dealing
with raw waveforms [30], [45], [50], [61].

While important advances in all the relevant fields can
be identified, two main challenges define the future of SH:
(1) Methods that can jointly detect/classify/locate and sepa-
rate/enhance under a unified optimization scheme are required
to be able to selectively modify sound sources in the scene.
While independent detection, separation, localization, clas-
sification, and enhancement methods can be reliable under
constrained conditions, they do not provide the robustness
and flexibility required for SH. (2) Realistic SH applications
require methods suitable for real-time processing. While real-
time processing is already achievable in certain tasks, there
is in general a clear trade-off between algorithmic complexity
and performance.

As a final remark, we would like to highlight the potential of
exploring joint models for ANC and machine listening. Even
though ANC has not traditionally been developed within the
machine listening community, the potential of methods that
can for example, first classify the acoustic scene and then
selectively apply ANC, is to the authors’ knowledge, still open
for exploration.
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